

Ethernet 101 for Automotive

Michael D. Johas Teener

Plumbing Architect & Sr. Technical Director, Broadcom Corp mikejt@broadcom.com / m@j0t.us

Agenda

- Networking Technology & Standards
 - Ethernet the way it really is!
- Ethernet In-Vehicle Networking
 - Using Ethernet in a constrained/controlled environment
 - Ethernet PHY example roadmap

What am I trying to show?

- Ethernet already has the fundamental toolkit in place
 - and there is a huge market and technology momentum
 - highest performance, lowest cost, widest adoption (proven)
- Adapting Ethernet to vehicular requirements is straight-forward
 - and has significant fundamental advantages over the alternatives
 - AVB (now) and AVB gen 2 (future) provide the next set of tools
 - physical layers optimized for automotive and control applications

The way it really is

- All links run at 100 Mb/s or faster
 - 1 Gb/s links are now outselling 100 Mb/s
 - 100 Mb/s is "free" (included in most consumer-electronics-based SoC's)
- Ethernet is a switched network
 - there are no shared media (e.g. hubs, repeaters)
 - "CSMA/CD" is dead, there is no "media access protocol"
- Ethernet switches are really smart
 - priorities, virtual LANs, QoS by deep packet inspection
 - "spanning tree" and "shortest path bridging" eliminates loops
 - "link aggregation" takes advantage of redundant paths

The way it really is (cont.)

- Ethernet PHYs are really smart
 - automatic pair alignment
 - cable diagnostics (impairment measurement and location)
- Ethernet runs on all kinds of media
 - UTP (1-pair for BroadR-Reach, 2-pair for 100Mb/s, 4-pair for 1Gb/s and 10Gb/s)
 - STP (10G short range)
 - optical fiber (multimode or single mode, silica or plastic)
- Ethernet does not have to run at "decade" rates
 - 2.5G widely deployed in data centers
 - "SONET" infrastructure used for Ethernet links as well

Security

- Switched network, remember?
 - All connections are point-to-point, not shared
- "MACSEC" is a hop-by-hop, link-specific security system
 - Devices on each end of a wire link can encrypt data just for a known device on the other end
 - Extended to support login (same technique used in "WPA" for WiFi)
 - Extended further to support robust device ID

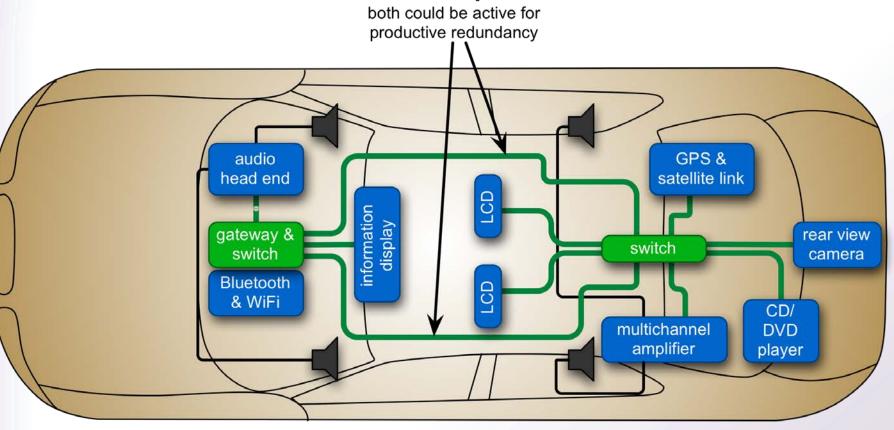
The way it is coming to be

- 10 Gb/s deployment is ramping up
 - currently data center and telecom / short range copper / long range fiber
 - UTP (four pair Cat 6a ramping for data center / video)
- 40 and 100 Gb/s standardization complete
 - for optical fiber ribbon
 - new project for shielded twisted pair (STP)
- "Energy Efficient Ethernet" standardization is complete
 - automatic and very fast power scaling with traffic requirements
 - deployed NOW
- "FireWire"-type streaming QoS services coming soon
 - IEEE 802.1 Audio Video Bridging
- Congestion management for data
 - "no dropped packets" IEEE 802.1au, 802.1bb

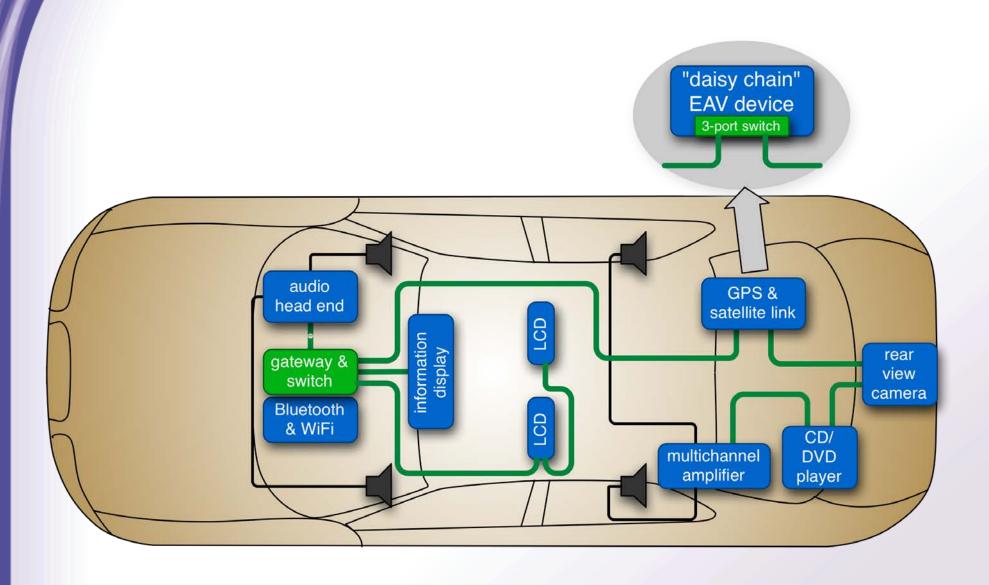
Synergies

- Almost all networked devices have an Ethernet port
 - least common denominator
- Baseline assumption for IP networking
 - must work on Ethernet
- Baseline network for DLNA
 - along with WiFi
- Market volumes are *huge*
 - Broadcom alone shipped over a billion ports by 2004
 - Technology and production investment continues

How do we use it?


- Enormous flexibility in deployment
- Ethernet switching standard allows for
 - many cable hops
 - star, daisy-chain, ring ... any topology
- Rings or meshes OK for redundancy
 - "spanning tree" will disable redundant links
 - or redundant links can be used together in "link aggregation"
- Devices can have built-in switch to encourage daisy-chaining
 - currently done with VOIP phones

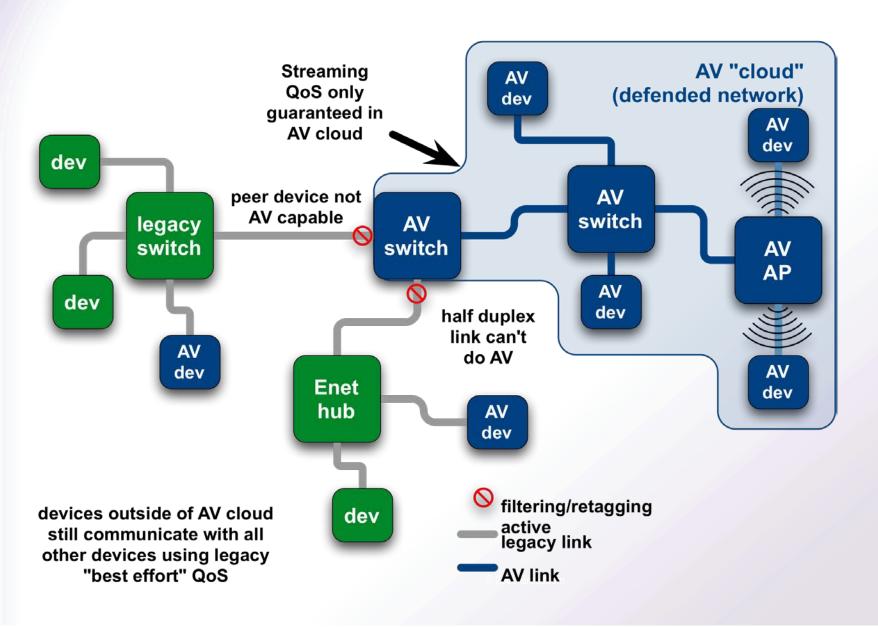
Topology with redundancy


redundant paths:

Topology without redundancy

IEEE 802.1 Audio Video Bridging

- The IEEE 802.1 AVB Task Group was responsible for developing standards that enable time-sensitive applications over IEEE 802 networks
 - the IEEE 802.1 Working Group is responsible for bridging (including Ethernet "switches")
 - interoperability between networks of differing layer 2 technologies
- The primary projects completed:
 - queuing and forwarding of time-sensitive streams ("credit-based shaper")
 part of IEEE Std 802.1Q-2012 "VLAN networks"
 - registration and reservation of time-sensitive streams ("stream reservation protocol) part of IEEE Std 802.1Q-2012 "VLAN networks"
 - time synchronization ("generalized Precision Time Protocol gPTP") –
 IEEE Std 802.1AS-2011
 - overall system architecture (IEEE Std 802.1BA-2011 "Audio Video Bridging Systems")


Unified Layer 2 QoS

- Enhance network bridging
 - Define common QoS services and mapping between different layer 2 technologies
 - IEEE 802.1 is the common technology
- Common endpoint interface for QoS
 - "API" for QoS-related services for ALL layer 2 technologies
 - Toolkit for higher layers
 - Provide network independence for endpoints without giving up QoS

AVB services only in the "AV cloud"

Audio Video Bridging Services

- 2 ms bounded latency through 7 Ethernet bridges
 - linear relationship with the number of bridges
 - delays through cooperating 802.11 systems TBD, but much longer
- SRP reserves link resources
 - For Ethernet, bandwidth is the primary resource
 - For coordinated shared media (802.11, G.hn, MoCA) resource management is more complex
- Precise timing and synchronization services for timestamps and media coordination
 - < 1μs instantaneous synchronization between devices
 - delivered clock provides a reference that can meet the jitter and wander requirements (MTIE mask) for HD-SDI and AES audio streams

New services / technology / standards

- Ethernet is in continuous development
- New physical layers
 - 40GbaseT, reduced-pair PHYs
- New reliability enhancements
 - Multiple paths / simultaneous paths for critical traffic
- New delay reduction technologies
 - Scheduled queues, preemption, burst limiting queues
- These could all be parts of "AAA2C"
 - But they are going to be standardized / deployed in any case

An example "new technology"

- Ethernet designed for much longer distances
 - UTP for 100m
 - 3 connector interfaces in series (jumper-backbone-jumper)
- Perhaps we can use this for extra margin to gain resistance to interference?
 - example: Broadcom's "BroadR-Reach" PHYs use 1G technology to go
 500m at 100 Mb/s using 4 pair or even 500m over a single pair at 10Mb/s
 - Lower cost replacement for DSL
 - Use the same idea to provide Ethernet unshielded single pair PHY operating at 100 Mb/s
 - Uses same concept as 4x UTP 1GbaseT
 - Uses existing auto cable/connector technology

Layer 2 Technology Roadmap

- Possible new generation reduced pair UTP (wired connections for automotive and control)
 - 250baseOneT (using lessons from 100) a few years
 - 1GbaseOneT (using lessons from 250 and standard 10GbaseT) - a few more years
 - 2.5GBaseOneT (or 2.5GBaseTwoT) maybe 6-8 years
 - (Maybe two pair ... not decided yet)

Wireless

- 2.4GHz/5GHz 802.11 can be AVB compliant (802.11v and 802.11aa updates) – up to 1Gb/s, with variable QoS
- 60GHz "WiGig" can be AVB compliant (802.11ad), good for short range ... inside passenger compartment

Automotive AV network comparison

	Ethernet AVB + BroadR-Reach	MOST	IDB-1394 "FireWire"
Architecture	switched	shared synchronous ring	shared bus
Topology	star, daisy-chain, ring –all with optional <i>productive</i> redundancy	ring	star, daisy-chain, ring - all with optional redundancy
Bandwidth	100 Mb/s, 1000 Mb/s, 10 Gb/s widely deployed – 40/100 Gb/s in development – many other rates used in private networks <i>per link</i>	25 Mb/s common, 150 Mb/s in early deployment shared	100, 200, 400, 800 Mb/s widely deployed – 1.6Gb/s in prototype, 3.2Gb/s specified shared
Medium	single UTP (Flexray or equivalent at 100 Mb/s), multiple UTP/STP, coax, all types of fiber	Plastic Fiber, UTP	fiber and STP up to 800Mb/s, UTP to 100Mb/s – UTP up to 800Mb/s specified
Sample rate / time synch support	Any arbitrary native rates ~ 100 ps jitter - <1 us synchronization	44.1 KHz native, sample rate conversion for other rates	Any arbitrary native rates ~ 100 ps jitter - <1 us synchronization
Diagnostics	Built-in Cable Diagnostics that checks open, short, location of fault, quality of the medium.	??	??
Cost	Low-cost, approaching analog system, many billions of ports deployed	Higher, less than a million ports deployed	Higher, no deployment, but over one billion 1394 ports

Conclusion

- Ethernet offers true networking at competitive costs
- Data rates are compatible with automotive and control use cases now
 - With a robust technology road map
- Quality of Service is compatible with camera/audio/ video use cases
 - Bounded latency, guaranteed bandwidth, precise synchronization
 - Improvements in the pipeline for control applications
- Modest reuse of existing technology for auto use
 - Existing auto-qual single unshielded twisted pair and connectors

Thank you!