

A

AVnu Alliance™ Best Practices

AVB Software Interfaces
and Endpoint Architecture Guidelines

AVnu Best Practices001

Revision 1.0

12/19/2013 12:35 PM

Eric Mann, Levi Pearson, Andrew Elder,

Christopher Hall, Craig Gunther, Jeff Koftinoff,

Ashley Butterworth, Daron Underwood

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, EXPRESS, IMPLIED, OR

STATUTORY. AVNU ALLIANCE MAKES NO GUARANTEES, CONDITIONS OR REPRESENTATIONS AS TO THE

ACCURACY OR COMPLETENESS CONTAINED HEREIN. AVnu Alliance disclaims all liability, including liability for

infringement, of any proprietary or intellectual property rights, relating to use of information in this document.

No license, express or implied, by estoppel or otherwise, to any proprietary or intellectual property rights is

granted herein.

Other names and brands may be claimed as the property of others.

Copyright © 2012-2013, AVnu Alliance.

1. Introduction and Scope

Starting in 2007, the IEEE Std. 802.1 “AV Bridging Task Group” developed a series of specifications to optimize

time-synchronized, low latency media streaming services through IEEE 802 networks. The working group

produced companion specifications IEEE Std. 802.1AS™-2011 (for time synchronization), IEEE Std. 802.1Qav™-

2009 for traffic shaping, and IEEE Std. 802.1Qat™-2010 for resource reservation. These protocols are merged

into IEEE Std. 802.1BA™-2011, IEEE Std. 802.1Q™-2011 and IEEE Std. 802.1AS™-2011 – which are collectively

referred to as “AVB”.

This document provides a suggested architecture for implementing the components of an AVB endpoint. It

provides some background material that motivates the design of the AVB protocols, briefly describes the

hardware and software components involved in an AVB endpoint, and then gives a detailed look at the

interfaces and dynamic behavior of the core AVB protocols. Many valid implementations can be realized with

different combinations of operating system-specific features and hardware-optimized solutions to address the

needs of specific market segments.

At present, the scope of the detailed protocol descriptions extends only to the highest-level interface of each of

the core protocols. Higher-level management protocols, ancillary utility protocols, and lower-level protocols that

the core protocols are built upon are not described in detail. Those may be dealt with in future revisions of this

document or other documents yet to be published.

Background on AVB provides material that describes why AVB was developed, what problems it solves, and the

general techniques it uses to solve them. Hard requirements for certain hardware blocks are given, as well as

what features may significantly ease development.

An Example AVB System provides more detail about how the functional blocks work individually as well as how

their interfaces could be combined to implement a media-streaming AVB endpoint.

Software Architecture describes the application programming interface (API) to each of the functional blocks

described in the document. The approach to API definition follows a loosely object-oriented model, describing

each interface in terms of objects and their data and operation members. This is merely for presentational

clarity; implementations need not follow an object-oriented approach so long as the essential protocol

interfaces are available.

UML-style interaction diagrams are included to illustrate various dynamic behaviors of AVB components.

1.1. AVnu’s Relationship to AVB

AVnu is an industry alliance to foster, support and develop an ecosystem of vendors providing inter-operable

AVB devices for wide availability to consumers, system integrators and other system-specific applications. AVnu

provides interoperability guidelines and compliance testing for device manufacturers, as well as technical

guidance such as this document for implementing AVB systems. For more information, visit our website.

Contents
1. Introduction and Scope ...2

1.1. AVnu’s Relationship to AVB ..2

1.2. Terms used in this document ...4

2. Background on AVB ...7

2.1. Common Hardware Requirements ...8

3. An Example AVB System ...9

3.1. The A/V Media Application ... 10

3.2. Time Synchronization .. 11

3.2.1. Introduction to gPTP .. 11

3.2.2. gPTP Time and Application .. 12

3.2.3. gPTP Operation .. 13

3.2.4. Clock Fidelity .. 21

3.3. Media Clock Transformations .. 23

3.4. AVB Network and Stream Configuration ... 27

3.5. Stream Processing ... 28

3.6. AVB Remote Manageability and Control ... 29

4. API Description Format .. 30

4.1. Objects ... 30

4.2. Data Types ... 30

4.3. Data Members ... 31

4.4. Operation Members .. 31

4.5. API Dynamic Behavior Format ... 32

4.5.1. Successful operation cases .. 32

4.5.2. Exceptional operation cases .. 32

5. Software Architecture .. 32

5.1. gPTP ... 33

5.1.1. Object Definitions .. 34

5.1.2. Data Type Definitions .. 35

5.1.3. Data Member Definitions .. 36

5.1.4. Operation Definitions .. 37

5.1.5. gPTP Dynamic Behavior Examples ... 40

5.2. Stream Reservation Protocol (SRP) ... 43

5.2.1. SRP Endpoint ... 44

5.2.2. Domain .. 47

5.2.3. Talker ... 50

5.2.4. Listener .. 53

5.2.5. SRP Dynamic Behavior ... 58

5.2.6. SRP Implementation and Usage Notes .. 63

5.3. AVB LAN ... 64

5.3.1. Object Definitions .. 66

5.3.2. Data Type Definitions .. 66

5.3.3. Data Member Definitions .. 67

5.3.4. Operation Definitions .. 68

1.2. Terms used in this document

Term Description or Definition

ACMP AVDECC Connection Management Protocol

IEEE Std. 1722.1™-2013 defined protocol to manage the stream identification and reservations

between talker and listener nodes.

AECP AVDECC Enumeration and Control Protocol

IEEE Std. 1722.1™-2013 defined protocol to enumerate and control AV devices.

AVB Audio/Video Bridging

Set of IEEE 802 standards – such as IEEE Std. 802.1BA™-2011, IEEE Std. 802.1Q™-2011, IEEE Std.

802.3™-2012, IEEE Std. 802.11™-2012 and IEEE Std. 802.1AS™-2011 - developed to enable

standards-based networking products to transport time-sensitive network data streams.

 http://standards.ieee.org/getieee802/download/802.1AS-2011.pdf,

 http://standards.ieee.org/getieee802/download/802.1BA-2011.pdf,

 http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf,

 http://standards.ieee.org/getieee802/download/802.1Qat-2010.pdf,

 http://standards.ieee.org/getieee802/download/802.1Qav-2009.pdf,

 http://standards.ieee.org/about/get/802/802.3.html

AVDECC Audio/Video Device Discovery, Enumeration, Connection Management and Control

IEEE Std. 1722.1™-2013 defined protocol used to coordinate the connection and operation of AVB

devices.

AVTP Audio Video Transport Protocol for Time-Sensitive Streams

IEEE Std. 1722™-2011 defined protocol for encapsulation of AVB streamed content.

FQTSS Forwarding and Queuing Enhancements for Time-Sensitive Streams

Traffic shaping algorithm is defined by IEEE Std. 802.1Q™-2011, Clause 34.

gPTP Generalized Precision Time Protocol

A protocol for establishing time synchronization defined in IEEE Std. 802.1AS™-2011.

LAN Local Area Network

IEEE Std. 802.3™-2012 specification defining wired Ethernet devices.

MAAP MAC Address Acquisition Protocol

IEEE Std. 1722™-2011, Clause B defined protocol to dynamically allocate multicast MAC addresses

for use with AVB streams.

PCP Priority Code Point

Traffic class priority tag defined in IEEE Std. 802.1Q™-2011, Clause 9.6.

PTM Precision Time Measurement (PTM) PCI-SIG ECN

http://standards.ieee.org/getieee802/download/802.1AS-2011.pdf
http://standards.ieee.org/getieee802/download/802.1BA-2011.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf
http://standards.ieee.org/getieee802/download/802.1Qat-2010.pdf
http://standards.ieee.org/getieee802/download/802.1Qav-2009.pdf
http://standards.ieee.org/about/get/802/802.3.html

PCI-SIG defined method to establish precise time synchronization between PCIe devices and the

host platform. See
http://www.pcisig.com/specifications/pciexpress/specifications/ECN_PTM_Revision1a_31_Mar_2013.pdf.

PTP Precision Time Protocol

A protocol for establishing time synchronization defined in IEEE Std. 1588™-2008.

SRP Stream Reservation Protocol

IEEE Std. 802.1Q™-2011, Clause 35 defined method to define an AVB overlay on a network. A

thorough understanding of Clause 10 is also required.

http://standards.ieee.org/getieee802/download/802.1Qat-2010.pdf

http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf

WLAN Wireless Local Area Network

IEEE Std. 802.11™-2012 specification defining wireless Ethernet devices.

http://standards.ieee.org/getieee802/download/802.11-2012.pdf

http://standards.ieee.org/getieee802/download/802.11aa-2012.pdf

http://www.pcisig.com/specifications/pciexpress/specifications/ECN_PTM_Revision1a_31_Mar_2013.pdf
http://standards.ieee.org/getieee802/download/802.1Qat-2010.pdf
http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf
http://standards.ieee.org/getieee802/download/802.11-2012.pdf
http://standards.ieee.org/getieee802/download/802.11aa-2012.pdf

2. Background on AVB

The Audio/Video Bridging (AVB) standards are integrated into the IEEE 802 standards – such as IEEE Std.

802.1BA™-2011, IEEE Std. 802.1Q™-2011, IEEE Std. 802.3™-2012, IEEE Std. 802.11™-2012 and IEEE Std.

802.1AS™-2011. The AVB extensions were developed to enable networking products to transport time-sensitive

network media streams.

A simple example of a time-sensitive network media stream is the transmission of live audio data over a network

for immediate playback over speakers. To implement such a system requires several key features and

modifications to existing behavior of IEEE 802 networks.

While a few dropped packets are usually tolerated on Ethernet networks, lost AVB packet data results in audible

artifacts – such as pops – when digitized audio data is converted back into the analog domain. AVB provides a

bandwidth reservation method to establish bandwidth guarantees throughout a multi-hop Ethernet network

from the source of data to all possible recipients. This bandwidth guarantee eliminates packet drop due to

network congestion. This also distributes information about stream availability and network configuration

parameters required for endpoints to send or receive streams.

The internal details of how packets are queued within Ethernet bridges can result in highly variable packet

propagation latencies through a network. AVB gives priority to the time-sensitive network data by placing

requirements on the forwarding and queuing behavior for those streams. This guarantees delivery of data from

any source (a Talker) to any receiver (a Listener) with a bounded maximum latency. These requirements apply to

both the intermediate bridges as well as the Talkers in the AVB network.

Finally, AVB supplies a high-precision time synchronization protocol. This protocol enables network nodes to

achieve synchronized clocks which differ by less than 1 microsecond1. This in turn enables high-precision

recovery of media sample clocks over Ethernet networks, and synchronized rendering by multiple separate

Listener devices. By precisely matching the sample rate and phase-alignment between multiple devices, AVB can

meet the exacting requirements of the professional audio industry for high-quality audio distribution.

Combining these mechanisms enables a system designer to build a distributed network of devices to play back

media content with high fidelity and excellent user experience. In addition, other network applications – such as

timed industrial controls or an automotive ECU data bus– can use the same timing- and latency-sensitive

networks.

1
 IEEE Std. 802.1AS™-2011, Annex B.3.

2.1. Common Hardware Requirements

Although much of the AVB functionality of an endpoint can be implemented in software, the specifications

demand some behaviors from the endpoints that require special hardware assistance and others that may

impose a heavy computational overhead without hardware assistance. Many combinations of hardware and

software may be used to correctly implement AVB, so it is important to know the constraints and capabilities of

different approaches when designing a system.

Talkers must limit the transmission of traffic belonging to an AVB traffic class to less than or equal to the

bandwidth allocated for that traffic class on a specific port. Implementation of the class-based Forwarding and

Queuing Enhancements for Time-Sensitive Streams (FQTSS) traffic shaping algorithm may, depending on other

platform capabilities, require specialized hardware; e.g. a packet queue providing an implementation of the

credit-based shaper described in the standard, or a MAC that supports time-triggered transmission of data

frames.

Listeners do not have traffic shaping requirements, but some media transport protocols such as AVTP place an

upper bound on the time available from the moment a sample arrives at the network PHY and when it must be

presented to the media application. AVB uses a priority code point (PCP) and VLAN identifier to segregate the

time-sensitive traffic from other, lower priority traffic. The LAN interface must be capable of handling packets

with the additional tag present, and specialized filtering of traffic based on the tag values or other AVB-specific

fields can relieve a significant burden from software.

While not required, LAN interfaces with 4 or more independent transmit and receive queues simplify AVB design

requirements by providing the ability to steer AVB-related protocol frames (SRP and gPTP, described later)

based on MAC address or packet priority to higher-priority transmit and receive queues. As mentioned, two

FQTSS queues shape time-sensitive streams of AVB data. The associated SRP and gPTP protocols also benefit

from prioritized processing over best-effort traffic, but at lower priority than the FQTSS queues. For example, a

common problem develops when best-effort LAN traffic stalls delivery of SRP frames. The SRP protocol is

dependent on timers to age out stale or non-existent streams from the network. Long SRP processing delays are

sufficient to trigger the AVB network to tear down existing stream reservations because the AVB network

believes the stream has disappeared. This stream teardown results in interruptions of streaming data across the

network until the talker re-establishes reservations through the network.

The time synchronization protocols require the system to timestamp the clock synchronization packets with

typically 10’s of nanosecond precision and accuracy. These requirements cannot typically be met by software

running on a general-purpose CPU, so most AVB systems require hardware timestamp support in the Ethernet

MAC hardware. Some systems have a simple trigger mechanism in the MAC hardware that interfaces with a

centralized timestamp capture system, while others implement a sophisticated timing engine in the Ethernet

block.

Recovery of other clocks, such as media clocks encoded within transport streams, often requires additional

hardware to meet product requirements. This feature requires precise timestamp capture of media clock edges

on both Talker and Listener. The system must translate those timestamps to the exact gPTP time at which the

capture events occurred. It also typically involves a software-adjustable PLL on the Listener, which provides fine

tuning within a small frequency range (<1PPM) for the clock that is being recovered.

3. An Example AVB System

A basic AVB system exhibits interaction between a small number of components.

Figure 1. Example System Architecture

The functionality of the various blocks will be described in more detail later in this document. For illustration

purposes, referring to Figure 1:

a) The A/V Media Application creates or consumes various forms of content – audio or video. The media

application is responsible for managing stream reservations and creating and consuming AVB streaming

data using the suggested facilities described in this document. Other product domains might replace

this application with one that utilizes AVB for time-sensitive control data streams, but the rest of the

system would remain largely the same.

b) AVB Network and Stream Configuration detects and modifies key AVB network parameters, advertises

the presence of AVB streams, negotiates the allocation of AVB bandwidth, and notifies the media

application of key events.

c) Time Synchronization establishes a local time reference which is coordinated with other AVB nodes. The

service reports the quality of the time reference coordination, and provides translation services

between time measurements of other local clocks and the coordinated reference clock.

d) Media Clock Handling uses the distributed network clock maintained by Time Synchronization to

synchronize other distinct clocks between AVB endpoints. Media clocks are generated by an

independent programmable phase-lock loop (PLL) and provide the clocking for analog-to-digital or

digital-to-analog converters (ADC/DAC).

e) AVB LAN provides accurate timestamps of time synchronization packet transmit and receive events,

receives AVB streaming data traffic, or transmits AVB streaming data traffic consistent with the stream

bandwidth reservation allocated by the AVB Network and Stream configuration module and the AVB

forwarding and queuing rules.

f) The Stream Processor merges the various functions to encapsulate media data (such as samples and

timestamps) for transmission via the AVB LAN block. It also receives data from the AVB LAN module and

separates the media data for playback and clock recovery.

g) Remote Configuration enables advanced AVB device detection and configuration, as well as stream

connection management facilities. Higher level protocols, such as Audio/Video Device Discovery,

Enumeration, Connection Management and Control (AVDECC), are commonly use to coordinate the

connection and operation of AVB devices within the network above and beyond low-level bandwidth

allocation and streaming protocols. For example, common usages to connect an input to an output and

modify the volume for playback map to AVDECC’s ability to identify all available nodes, instruct a

listener (attached to a speaker) to connect to a specific talker stream (which could represent a specific

microphone), and remotely modify playback parameters such as volume.

3.1. The A/V Media Application

For completeness, a description of common expected functions of media applications is included to frame the

relevance of underlying services and APIs. The media application needs to manage the various media input and

output devices, decide what streams to make available or access, and when to make the streams available.

At a high level, the media application may manage live media or stored media. Live media refers to systems

that use hardware for capturing or playing media in real-time, such as a hardware ADC/DAC or Codec. Live

media AVB devices require media sample rate control, interface clock selection and configuration, a start/stop

control and some form of DMA engine to access the samples, and specifically for AVB, time stamp of the media

clock to a reference clock. In order to stream live media, AVB must associate media clock timestamps with

specific samples captured or emitted. The media clock is then encoded into the stream, using a common

network time as a timebase.

In the case of playback from stored media, such as a system to distribute stored music and pre-recorded

announcements across a building, the media application could reasonably expect to implement rate control

functionality, media buffer management, and synthesizing timestamp information based on stored media clock

information.

3.2. Time Synchronization

No two unadjusted oscillators run at precisely the same frequency. As a consequence, clocks based on these

different oscillators do not agree on the time. This lack of a common time-base makes it impossible to play the

same media sample(s) at the same time to two or more media output devices. Furthermore, if data is sourced

by one system to be consumed at the same rate by another system, eventually the receiver data buffer will

over-run or under-run depending upon which oscillator is faster.

The matching of one clock (as characterized by an oscillator) to another can be described by two terms,

syntonization and synchronization. Two clocks are said to be syntonized when their oscillators are precisely the

same in frequency. In other words, they measure time passing at precisely the same rate. This is an essential

property for media clocks.

Two clocks are said to be synchronized when they both agree precisely on what time it is at any moment. Their

characteristic oscillators need not be syntonized to the same frequency, but they must agree precisely on the

rate at which time passes even if one does not measure it as often as the other. Otherwise, their notions of what

the current time is will begin to drift with respect to one another immediately after they are synchronized.

The synchronization property is sometimes less important for media clocks, depending on whether phase

alignment is required, but AVB can provide both syntonization and synchronization.

If probes are attached to media clock signals from two AVB devices that have syntonized and synchronized their

clocks, an oscilloscope will show the two clock signals to be precisely matching in frequency and phase. This

provides the foundation for synchronization of played media samples.

The AVB Time and Clock Synchronization services are based on a synchronized clock service in each device that

can be used to syntonize and synchronize any number of media clocks between AVB devices. Each end node

implements one or more Clocks. Each Clock is related to the other relevant Clocks, fundamentally referenced to

a network time established by generalized Precision Time Protocol, described below. A Clock measurement can

be translated to units of another Clock, and the Clock itself can be queried for its quality to determine stability,

or possible error, of the clock itself.

3.2.1. Introduction to gPTP

To meet the above requirements, AVB adopts and extends an established protocol for time synchronization in

the realms of industrial control and telecommunication: IEEE Std. 1588™-2008, also known as "Precision Time

Protocol" (PTP). Although the AVB adaptation can be considered a profile of PTP, it is different enough to

warrant its own mostly-independent standard: IEEE Std. 802.1AS™-2011, also known as "generalized Precision

Time Protocol" (gPTP).

gPTP defines a single Domain, which is a group of interconnected devices that support running gPTP over every

active link between them. This is a separate concept from an SRP Domain (described later). The gPTP Domain

may be different to the SRP Domain and the set of devices which can be used for AVB is the intersection of these

two domains. In practice, the two notions of Domain will describe the same set of devices and links in a well-

configured AVB network.

One essential difference between PTP and gPTP with respect to the concept of Domain is that a gPTP Domain

explicitly does not support links through network switches that do not participate in the protocol. This means

that in an AVB network, all network switches between AVB endpoints must support gPTP (and the other AVB

protocols as well).

The protocol implements the following actions:

 Determines domain eligibility

 Elects a grandmaster clock

 Determines network delay between peers

 Determines time-of-day offset between grandmaster and others

 Determines frequency offset between grandmaster and others

 Provides time-of-day and interval measurement services with respect to the grandmaster clock's time

There is a great deal more detail involved in each of those actions as well as in the algorithmic combination of

their outputs to produce the effect of time synchronization.

3.2.2. gPTP Time and Application

gPTP time is represented in terms of an epoch as well as a positive offset from epoch. gPTP time can

simultaneously represent the nanosecond-unit clocks commonly encountered in AVB systems, as well as

approximately 8.9 million years elapsed time from epoch. gPTP’s Extended Timestamp is defined as a 48-bit

seconds and 48-bit fractional nanoseconds field2, which represents the positive time with respect to an epoch in

seconds and 2-16 nanoseconds.

Although epoch is formally referenced to 00:00:00 TAI, 1 January 19703, a grandmaster using an internal

oscillator as its ‘timeSource’ can define the epoch in an arbitrary manner4. Some systems may default epoch to

start from zero. With these devices, as the grand master role possibly transitions from one to another device,

the gPTP epoch may change as a result (as not all devices may start simultaneously). Other devices may choose

seemingly random epoch values which could make the most significant bits of the Extended Timestamp

relevant. For full compatibility, a gPTP service must internally maintain a 78-bit gPTP time representation.

2
 IEEE Std. 802.1AS™-2011, Clause 6.3.3.5

3
 IEEE Std. 802.1AS™-2011, Clause 8.2.2

4
 IEEE Std. 802.1AS™-2011, Clause 8.6.2.7

gPTP clocks are rarely deliberately grossly modified, unless a new clock master is selected. Although they could

be derived from and initially synchronized to a global time, after activation, the absolute value would not be

arbitrarily adjusted to reflect time keeping conventions such as daylight savings time, leap-second, or related

clock modification.

It is important to remember implementations fundamentally separate media time (and clocks) from gPTP time.

Although in a controlled network, changes in the master clock are unlikely, gPTP is designed to tolerate changes

of the network time grandmaster. A/V Media Applications must comprehend this behavior of gPTP.

For example, Talkers and Listeners exchange gPTP timestamps for synchronization of playback. AVDECC defines

a control type to transport a gPTP timestamp. AVTP also defines a 32-bit avtp_timestamp field calculated from

the 32 most significations bits of the 48 bit gPTP fractionalNanoseconds field and the low 2 bits of the gPTP

seconds field. If the A/V Media Application detects the grand master has changed, resulting in a possible

discontinuity in gPTP time while a stream is in progress, the Media Application can use the AVTP ‘timestamp

uncertain’5 field to maintain playback despite possible changes resulting in different gPTP epochs.

3.2.3. gPTP Operation

As illustrated in Figure 2 (for LAN) and Figure 3 (for WLAN), gPTP clock domain establishment occurs in four

phases – determining whether the peer is capable of supporting gPTP (“asCapable”), determining the path delay

and the rate of the peer’s clock (the neighborRateRatio), a best master clock master selection, and lastly to

synchronize all nodes to the master time source.

5
 IEEE Std. 1722™-2011, Clause 5.4.7

Figure 2. Normal gPTP Clock Domain Establishment – LAN-based

Figure 3. Normal gPTP Clock Domain Establishment – WLAN-based

3.2.3.1. Determining Peer Capability

In the first phase, an end node begins transmitting messages in an attempt to detect whether the peer is

capable of supporting gPTP. In the LAN case, this is accomplished by sending Pdelay messages and looking for a

Pdelay Response message to be returned from the peer. In the WLAN case, each endpoint exchange Extended

Capabilities Information Elements (IEs) with the ‘Timing Measurement’ capability bit set.

gPTP requires that all devices in the gPTP Domain support the protocol, and will not perform most protocol

operations without first determining this capability. The mechanism used to discover peer capability is the Path

Delay (Pdelay) measurement facility. If a peer responds to Pdelay requests within certain latency bounds, it is

considered capable of participating in the protocol and the other protocol operations are enabled on the port

leading to the peer. If the peer does not respond, or if the latency of its response exceeds the bounds, the only

gPTP operation that will continue is the attempt to determine peer capability with Pdelay requests.

3.2.3.2. Peer Rate Clock Determination

In the second phase, the end node calculates the link delay and a neighbor rate ratio. How this is done varies

between LAN and WLAN. In the LAN case, repeated exchanges of Pdelay and Pdelay Response messages

improve the estimation accuracy of the propagation delay, rate ratio of the peer, as well as track dynamic

changes in rates (e.g. due to thermal changes). In the LAN case, path delays are not expected to vary because of

physical changes. In the WLAN case, the path delay measurement and rate ratio is deferred to the clock

synchronization phase with the master.

3.2.3.3. Best Master Selection

In the third phase, the end-node sends announce messages which encode the default or administratively set

clock quality parameters to determine which end-node will behave as the clock master for the clock domain. An

administrator may set a priority on one end node over others to influence this selection process. The end-nodes

may also have varying quality of reference clock source inputs – ranging from commodity crystal oscillators to

GPS receiver inputs. Lastly, all things being equal, the MAC addresses of the various possible clock masters are

compared.

At the initialization stage every Master-capable node starts by sending to its active ports Announce packets that

include the clock parameters of its clock. Upon receipt of an Announce packet, a node compares the received

clock parameters to its own and if the received parameters are better, then the node moves to the Slave state

and stops sending Announce packets. When in Slave state the node compares incoming Announce packets to its

currently chosen Master and if the new clock parameters are better than the current selected Master, the Slave

transfers to the newly discovered Master clock. Eventually the best Master clock (BMC) is chosen. If the Slave

fails to receive a Sync message within (typically) 5 sync intervals, the Slave times-out and moves to the Master

state. It then resumes the process to select a new BMC.

The result of the Best Master Clock algorithm is a time-synchronization spanning-tree, in which all devices in the

network derive their clocks via a single network path from the root clock, which is the Best Master Clock if one is

available. Each non-leaf node is responsible for processing time synchronization data from its parent nodes and

sending updated data to its children.

3.2.3.4. Clock synchronization

After a clock master has been chosen, the last phase begins with the clock master distribution of ‘Sync’ and

‘Follow_Up’ messages. On any link the port closest to the chosen grand master will in the ‘Master’ state,

whereas the other port (furthest from the grand master) – or ports as in shared media - would be in the ‘Slave’

state.6

The Master node periodically sends an event message – in this case a synchronization (Sync) message – with a

default period of once per second. This synchronization message is deterministically time stamped by hardware

as it leaves the interface, and that timestamp is communicated to slave devices. The timestamp is either sent via

a Follow_Up message for LAN networks, or combined into a single Timing Measurement action frame for WLAN

networks. The Sync and Follow_Up messages go to the node’s immediate children along the time

synchronization spanning tree path. These packets are addressed to special MAC addresses that are not

forwarded by bridges, so each node in the tree must process incoming Sync packets and then emit new Sync

packets to its children in the tree. WLAN networks combine the Sync and Follow_Up data into a single Timing

Measurement action frame which carries the timing information from the current Sync frame and the

timestamp of the previous Sync frame.

Each bridge increments a correction field (in the Follow_Up or Timing Measurement frame) to correct the

computed time offset of the Sync message with the bridge residency time and the bridge-measured upstream

path delay. The end (slave) node performs a similar calculation to add its own path delay correction to the

bridge-supplied correction field. After applying these corrections, the end node is capable of computing a

precise cumulative delay representing the time when the original Sync message was emitted by the clock master

to the time when the Sync arrives at the end node.

When combining the correction field (from the bridge) with the local measurement of the peer link delay, the

end node should convert any local hardware timestamps to gPTP time before calculating the peer link delay. The

correction field can then be added to the peer link delay. As the bridge correction field is measured with the

gPTP grand master clock, whereas the measured peer link delay timestamps are measured relative to a local

reference clock (such as the LAN oscillator), the two clocks could materially differ in frequency to substantially

affect accuracy.

Using several synchronization time stamps and path delay measurements, the Slave node can perform a linear

best fit algorithm as described above to determine the rate ratio and the phase offset of its local clock to the

advertised Master clock rate.

When using gPTP, the packets are sent to a gPTP reserved destination multicast MAC address–

01:80:C2:00:00:0E - using a Layer-2 (L2) encapsulation with the gPTP allocated Ethertype – 88-F7. Although this

defined MAC address is a multicast address, the address falls within a bridge management reserved range and is

not forwarded to other ports7. Note that many common residential and small office bridges do not obey the

forwarding rules, and will replicate Nearest Bridge group address multicast frames to all other ports. Only a

6
 IEEE Std. 802.1AS™-2011, Figure 10-10.

7
 IEEE Std. 802.1Q™-2011, Table 8-1 entitled “Individual LAN Scope group address, Nearest Bridge group address”.

compliant switch will have this behavior of consuming Nearest Bridge group multicast frames. In this example, if

the bridge has gPTP enabled, the bridge will generate new frames to transmit on all other egress ports. If gPTP

is not enabled, new frames will not be generated and the behavior will appear to be suppressing frames.

Implementers should be aware of implicit timing requirements of media dependent functions. For example, a

bridge LAN port is said to be asCapable if the end node responds to Pdelay_Req (a request) with Pdelay_Resp (a

response) and Pdelay_Resp_Follow_up. If the end node does not respond, bridges will declare the port not

asCapable, and will not enable AVB functionality on the LAN port8.

3.2.3.5. Error Conditions

Each of the various periodic message exchanges is a source of a possible error condition. The most likely error,

illustrated in Figure 4, would be timing out receiving Sync messages from the Grand Master, indicating the

master has disappeared, although Pdelay (Figure 5) and Announce (Figure 6) timeouts are also possible error

conditions.

8
 See IEEE Std. 802.1AS™-2011 Clause 12.3 and 13.4 for a discussion about the determination of asCapable. The original IEEE

Std. 802.1AS™-2011 mandated a 10 millisecond response time (Annex B.2.3), although it was later relaxed by IEEE Std.
802.1AS™-Cor-1 (Clause 11.2.15.3). For maximum compatibility, end nodes should respond within 10 milliseconds or less,
but a response delay can be as large as the Pdelay_Req message transmission interval (as long as the response arrives
before the next Pdelay exchange).

Figure 4 Sync Timeout – Media Independent

Figure 5. Pdelay Timeout – LAN-based

Figure 6. Announce Timeout – Media Independent

3.2.4. Clock Fidelity

There are several methods to report the quality of the local gPTP time. Obviously, if the local node is the gPTP

grandmaster, the problem reduces to reporting the gPTP time is perfectly “locked”. Hence, the question is how

can slave mode devices best determine and report the fidelity of the recovered gPTP clock. Since the gPTP clock

is used for clock recovery of other clocks such as media clocks, jitter in the gPTP clock will lead to jitter on

derived clocks.

For software, reporting the error samples of the local clock relative to the gPTP clock as recovered by gPTP

would suffice to indicate clock recovery quality. Error is defined as the delta in nanoseconds between a freshly

computed grand master time on arrival of a Sync message (that being the corrected grand master time after

applying correction factors and path delay estimates) versus the previous extrapolated local estimate of time

referenced to the same local network timestamp value. The network timestamp of the Sync packet is computed

using the prior gPTP estimate and again with the updated gPTP estimate. The difference between the two values

is reported as the error. The gPTP service supports reporting at least the last eight (8) error samples.

In Figure 7 below, time sweeps a full 2π radian every second (1 Hz), where the grand master is assumed by

definition to be perfectly ideal, and any deviation or variability is caused by noise which could include

transmission jitter or quantization error from the grand master LAN interface, bridges or the end node itself.

The end node samples, via the Sync message, the ideal time 8 times a second represented by the various π/4

intervals on the unit circle. Ideally, after correcting for bridge propagation delays and the local path delay, the

Sync receive timestamp referenced to the local gPTP time should match exactly the master gPTP time. In other

words, the Sync transmission from master to slave should appear instantaneous after applying appropriate

corrections, and furthermore the local hardware timestamp on the Sync packet as received should translate to

the same gPTP time using the previous gPTP estimate and the updated gPTP estimate.

In reality, there will be differences between the two times - the local gPTP may over or under estimate the rate

of the gPTP time, as well as experience jitter from various sources. The green bars represent the sampling error

observed by the end-node – again, both local quantization errors introduced by the local LAN interface, as well

as errors introduced by the grand master and bridges. The width of the green bar is the observed error - the

computed phase offset between the ideal gPTP time (outer ring) and the local recovered PTP time (inner ring). A

variance calculation over (n) error samples can provide an indication how well the local gPTP subsystem is

tracking the ideal time. The interpretation of the error variance is left to the application to determine fitness and

suitability for use (as it may vary depending on application).

Figure 7. Error Estimation of local non-master gPTP time.

3.3. Media Clock Transformations

A media clock, sometimes called a word clock, is generally a signal used to synchronize various media sampling

and playback devices to exchange media samples at a constant sampling rate. In the case of audio, the media

clock is the digital sampling rate of the analog inputs.

The media clock controls the rate at which media samples flow from the source to the destination, typically

called the sample rate. To meet fidelity requirements the sampling rate of the source and destination must be

identical. This ensures that buffers and their associated latency can be small and bounded. It also eliminates the

need for sample rate conversion and enables multiple device synchronization.

When an AVB Talker is sending media to an AVB Listener, a mechanism must be in place to guarantee that the

media clocks between the two endpoints are synchronized. Audio/Video Transport Protocol (AVTP) defines

streaming formats which contain an embedded media clock but it is possible to use other streaming formats

which do not have an embedded media clock and provide a media clock through another mechanism. The media

clock timestamps must be converted to a gPTP timebase by the Talker using the gPTP clock reference. See Figure

8 for an illustration. Similarly, all Listeners must be capable of recovering the media clock information, if

available, from the stream received from the Talker.

Figure 8. Simplified Talker Media Word Clock encoding

The mechanism used to embed the media clock, as defined in AVTP, uses the gPTP time as a reference for the

Presentation Time Reference Planes. Figure 5.4 – Presentation Time Measurement Point - in the AVTP

specification shows ingress and presentation time reference planes that indicate the relative timing points for

the media clock timestamps. As shown in Figure 8, the Talker for a media stream matches sample timestamps

(translated to gPTP time) with the media samples produced at the time-stamped clock edge. The timestamps

may be packaged along with their corresponding samples in the media transport stream according to the media

transport protocol format.

gPTP provides a wall clock service based on Domain-wide clock synchronization. The single synchronized clock

service of gPTP can be used to provide a service that recovers the media clock from any media stream. The

underlying mechanism for this service is a procedure known as cross-time-stamping.

Cross time-stamping uses the gPTP time as a shared timebase to accurately measure the period of a local

oscillator. A cross timestamp provides a cross reference between two clocks. A cross timestamp provides an

instantaneous time reference in two time domains.

Figure 9 illustrates the general process of sampling a clock relative to another reference clock. The gPTP

software typically performs a linear regression to fit the time stamp samples. In the diagram, the rate of ‘clk’ is

sampled relative to a progression of a local reference clock ‘refclk’. From this information, the gPTP software

stack then creates a linear equation to use as a time reference to scale a local clock to network time, where the

scaling factor is the grandmaster frequency rate ratio, and the absolute time determined by calculation of the

propagation delays of the grandmaster announced precise time.

In some implementations, the timestamp values may need to be approximated. A common example is when

CPU-based timing features are used to sample a clock in software. In this case, two samples of the reference

clock should be used to bracket the sampled clock value instead of just one. Again referring to Figure 9 as an

example, ’clk’ is sampled, bracketed by two samples of ‘refclk’. The time delta between the two refclk samples is

assumed to be minimized as to also minimize the error caused by the rate of change of clk.

Approximated

Cross Timestamping

(optional)

Reference Clock

C
lo

c
k
 V

a
lu

e

Drefclk << Dclk

clk1

clk2

clk3

clk1

Figure 9. Cross Timestamp Sampling

Highly integrated solutions may keep the LAN local clock synchronized with the network time rather than

maintaining two or more clocks. However, keeping the network time separate from any one given network

interface may be useful when implementing multi-port or multi-network systems. The gPTP software stack can

also translate many other clock sources on the system – such as relating an audio device media clock time stamp

to a CPU time stamp counter value in order to schedule sample delivery to occur precisely at the presentation

time.

As shown in Figure 10, the Listener device extracts the cross-timestamps from the media transport stream data.

The difference between two cross-timestamps is the amount of time, as measured by the gPTP clock, between

the clock edges at which the corresponding samples were taken. Dividing the time interval between cross-

timestamps by the number of samples generated between cross-timestamps yields an estimate of the clock

period of the source media clock. Continually performing this calculation and applying appropriate filtering

techniques yields an accurate measurement of the source’s media clock period.

The Listener device performs a similar measurement of its own media clock, cross-timestamping it at regular

intervals with the gPTP reference clock, and uses those measurements to derive the local media clock period.

Since both media clocks are being measured with respect to the same "measuring stick" of gPTP time, the

measured clock periods can be directly compared.

The difference between remote and local clocks is fed into a control mechanism (typically a combination of

software and hardware) that adjusts the local media clock until it is syntonized and then synchronized with the

remote media clock.

Figure 10. Example Listener Media Word Clock Recovery

For specific applications or engineered systems which implement point-to-point, or one-to-many Talker to

Listener configurations, the Talker can supply the gPTP clock and media clock from the same reference. On the

Listener, media clock recovery effectively becomes an output of the gPTP synchronization process. This solution

can minimize product implementation cost by eliminating logic to scale gPTP time back to local reference clocks

for the purpose of media clock recovery, but it comes at the cost of a great deal of AVB’s flexibility and

interoperability.

Many real world applications (a mixer for example) require a Listener to receive audio from multiple Talkers

(many microphones for example). In these situations, a common media clock for all Talkers eliminates the need

for sample rate conversion (SRC) operations inside the Listener. The implication is that some sort of “House

Media Clock” equivalent for AVB is required. Although not formally part of the AVB specification suite, the

simplest method of distributing a “House Media Clock” is via a designated AVB stream that contains the

canonical media clocking information - any stream can be designated as the house clock reference stream. Any

Talker device that can talk to a mixing device should also be capable of being a Listener so that it can Listen to

“House Media Clock” AVTP packets and adjust its internal media clock to match the “House Media Clock”.

The house media clock implicitly requires all talkers which generate streams carrying media of whatever form to

listen to the house media clock, and use the house media clock for all media generation. Listener-only devices

(such as speakers) are not required to monitor the house media clock stream separately. Listeners can recover

the media clock from the streams they consume directly.

3.4. AVB Network and Stream Configuration

An AVB system requires Talkers to declare media stream bandwidth requirements to the network prior to

transmission on the network. End nodes and intermediate bridges use the Stream Reservation Protocol (SRP) to

communicate these requirements and status information in the form of MRP attributes (MRP is the underlying

protocol and state machine definition for SRP). AVB bridges process these attributes indicated by the Talker and

Listener end nodes to the SRP domain of the AVB network. This overall Stream Reservation Protocol determines

what resources to allocate to the various streams. Co-operative bandwidth allocation enables low latency packet

transmission and meets the performance guarantee of preventing packet loss due to congestion.

A Talker does not begin transmission until it is notified that at least one or more Listeners have requested to

receive the stream and the bridge(s) reports the bandwidth has been successfully allocated.

The following describes the primary building block objects – Domains and Streams - used with the API definition.

Domains exist within an AVB network to describe user priority and a default VLAN tag configuration for AVB

traffic classes. Bridges use the user priority to categorize traffic into specific traffic classes – either Class A or

Class B for AVB. All participating AVB endpoints are required to join the Domain they intend to stream data

upon, such that an AVB bridge can determine the boundary of the AVB stream reservation domain. A talker is

not required to stream on the default VLAN advertised by the Domain. A talker however must join a VLAN prior

to streaming upon a given VLAN. Streams are identified by an AVB network unique stream ID, and have

attributes such as a unique destination multicast9 MAC address, the associated VLAN ID and user priority, the

worst-case application network data payload size, the rate at which the stream will send such packets into the

AVB network, a binary indication of stream rank among other streams (e.g. emergency announcement or

normal), and lastly the maximum accumulated latency which represents the worst case latency the media data

has been in flight (from the talker presentation plane).

Talkers create one or more Streams, and Listeners subscribe to receive one or more Streams. AVB bridge devices

monitor the bandwidth requirements of the individual streams, and allocate bandwidth and resources as

9
 IEEE Std. 802.1Q™-2011, Clause 35.2.2.83 only defines the use of multicast and locally administered addresses for stream

destination addresses. Historically there was concern about multicast behavior on WLAN networks, suggesting use of
locally administered unicast addresses, although AVB-compliant WLAN access points should comply with IEEE Std.
802.11aa™-2012 which addresses multicast behavior. When a unicast stream is removed, expected bridge behavior is
undefined, and hence endpoints should avoid using unicast destination stream addresses for maximum compatibility.

needed (e.g. when a Listener subscribes) to ensure delivery of the Stream content. A Stream can be active or

stopped depending on whether there are active Listeners subscribed to the Stream.

The traffic class associated with the Stream affects the interpretation of some of the Stream attributes. For

example, a Class A Stream with a declared packet rate of ‘1’ indicates the Stream will produce at most one

network frame every 125 microseconds, whereas a Class B Stream with a packet rate of ‘1’ indicates the Stream

will produce at most one network frame every 250 microseconds. This is called the observation interval of the

Class. Another side-effect of the Class definition affects the traffic shaping behavior of a FQTSS-compliant egress

port – which is either the local LAN port of the Talker or intermediate AVB bridges. At the port level, traffic

shaping behavior of egress ports is managed over the aggregate Class bandwidth summed over all Streams of

the same Class.

Higher level protocols – such as AVDECC Connection Management Protocol (ACMP) - exist to manage the Talkers

and Listeners themselves to create, listen and delete Streams within an AVB network.

3.5. Stream Processing

When clock synchronization has been achieved, AVB Domain parameters declared, stream bandwidth allocated

and Listeners detected, a Talker may begin streaming onto the network. Prior to initiating a stream transmission,

class bandwidth on the Talker is adjusted. A talker must limit both individual transmission rate for each stream

and total transmission rate for each class10. Some implementations may depend solely on software-based pacing

of the individual packets of a stream or shaping the overall traffic class shapers, whereas others may use

hardware-based traffic shapers to enforce the bandwidth requirements.

Individual Ethernet frames are generated by merging standard header information with dynamic media content

and corresponding isochronous AVB presentation timestamps. Generated packets may not always contain the

same number of samples. A Talker is not required to fully utilize reserved bandwidth on each and every interval.

The situation arises because of the media packet format rules, which can result in packets of different sizes or a

packet transmission rate which isn’t an integer multiple of the observation interval of the traffic class. For

example – a Class (A) packet may be transmitted every 125 microsecond (8kHz), whereas the underlying media

clock could be any of a number of frequencies (such as 44.1kHz and 48kHz). The AVTP presentation time is the

time at which the defined sample within the AVTPDU crosses the Listener’s Presentation Time Reference

Plane11. The presentation time is offset from the Talker’s Ingress Time Reference Plane by the network transit

time which defaults to 2 milliseconds or 50 milliseconds depending on whether the stream is Class A or Class B.12

To reduce latency in engineered systems, Talker implementations may be configured to use an alternate transit

time based on the maximum accumulated latency of potential listeners. The Talker Advertise Accumulated

10
 IEEE Std. 802.1Q™-2011, Clause 5.18, 34.6.1.

11
 IEEE Std. 1722™-2011, Clause 5.5.4

12
 IEEE Std. 802.1BA™-2011, Table 6-2.

Latency is reported by SRP to the Listener13, and can be observed on the Listener via methods documented in

AECP.

In practical Talker implementations that support multiple streams, care must be taken to submit and sequence

the packets – perhaps in a round robin fashion - from the various streams onto the FTQSS shaper per-class

queues. For example, as a hardware-based class shaper is adjusted, the class shaper may momentarily send

more or less data on some existing streams belonging to that traffic class if the individual streams were not

paced and interleaved correctly in the queue. This can cause over-runs or under-runs on receivers or within the

bridged network itself.

The streaming functionality is typically implemented in the stream processor blocks described earlier. While the

concept is general, the internal implementation details are very protocol and application specific. Some

examples include how the media clock control is integrated as well as how media samples are provided to the

packets. These details are out of scope for this document. For the purposes of this document, at a minimum

these modules must implement a configuration interface (which is protocol and application specific), a start

interface to activate streaming (or prepare to receive a stream), and a stop interface (to gracefully stop a

previously established stream resource).

3.6. AVB Remote Manageability and Control

Several important aspects of configuring and establishing streams are not covered by the low-level AVB related

specifications. While this document will not go into detail, we do acknowledge a full design will implement a few

additional features, such as resource allocation for streams as well as enumeration and control of device

capabilities. Of particular relevance, but not covered here, is the AVDECC Connection Management Protocol

(ACMP), and AVDECC Enumeration and Control Protocol (AECP). ACMP and AECP together can be used to

remotely start an AVB stream and constitutes a layer on top of the SRP interface outlined in this document.

Open systems – those being integrated into notebook, desktop or workstations on standard high-volume

operating systems for example – may implement interfaces to enumerate and enable/disable AVB functionality

on LAN interfaces. Where multiple capable LAN interfaces exist, it may be required to configure each LAN

interface individually, or alternatively (if attached to the same Layer-2 network), to configure the AVB

components to prevent loopback effects (e.g. such as gPTP or MRP receiving copies of transmitted packets).

Some form of network resource allocation – such as multicast address allocation for streams provided by MAC

Address Acquisition Protocol (MAAP) or administrative allocation for example – is required to create streams,

but outside of the scope of this document. Other higher level protocols would need to implement a similar

method to allocate the multicast destination addresses required by SRP.

13
 IEEE Std. 802-1Q™-2011, Sub-clause 35.2.2.8.6.

Talker and Listener devices may demonstrate enhanced flexibility – for instance, it is reasonable to expect a

speaker device to be remotely configured to play back specific streams, and channels within given streams. For

the purposes of this document, it is sufficient for controls to exist to create, start, stop and reclaim streams on

an AVB subsystem without mandating how the streams will be used or mandating the details of how the stream

content will be interpreted.

4. API Description Format

This section describes the format in which the API descriptions of the various AVB components will be

presented. The approach taken follows a loosely object-oriented model, describing each interface in terms of

objects and their data and operation members. This is merely for presentational clarity, as implementations

need not follow an object-oriented approach so long as the essential protocol interfaces are available.

4.1. Objects

The objects are presented in a hierarchy that represents containment or composition; higher-level objects

contain or are composed of lower-level ones. Each object described in the hierarchy represents a separately

addressable active entity within the protocol or service.

4.2. Data Types

Passive data (i.e., not an active protocol entity) associated with the objects are represented via abstract data

types, and these types are specified with respect to the meaning they carry within the protocol rather than the

concrete representation they may take in an implementation. Simple types with short descriptions may be

introduced in-line with data when their meaning is clear, but types requiring more explanation will be described

with the most general enclosing object they are used within.

Simple types are used for values that can't be decomposed into a combination of simpler values. An integer or

floating point value would be a simple type. An integer is assumed to be at least 32-bits by default unless

otherwise specified. A floating point value is assumed to be 32-bit unless otherwise specified. Unless they

require explanation beyond what is provided with the values they are associated with, they will not appear in

the Data Types section. The descriptions will give sufficient information for implementations to choose a

reasonable concrete implementation type.

Numeric types are examples of simple types that represent a numeric quantity. Depending on the needs of the

API, a unit of measure may be associated with the type. A range restriction for the numeric values may also be

associated with the type to indicate which numeric values are valid instances of the type.

Enumerated types are simple types that can take on one of a fixed set of non-numeric values. The possible

values, represented as strings, are listed explicitly in the description of the type. An example would be an

enumeration of the available AVB Classes – “Class ID:: Enumeration of Class A, Class B”.

Aggregate types are used for values that are composed of other values. They can be combined in several

different ways. A common example is a structure type which describes values that have a fixed composition of

sub-values that may be of various types. The same number and types of sub-values occur in the same order for

each instance of the structure type. Structure types are sometimes known as "product types" or "record types".

A variant type combines an enumerated type with a set of other types, at most one per element of the

enumeration. The associated types could be either simple types or aggregate types. Variant types are

sometimes known as "sum types" or "tagged unions".

A collection type aggregates a number of values of the same type. Depending on the needs of the API, a more

specific kind of collection might be specified, or bounds might be given for the allowable number of elements in

the collection. More specific kinds of collections may include Sets, Lists, Arrays, Strings, Buffers, etc. Properties

that distinguish specific kinds of collection may be described.

A collection type may be indicated by placing brackets after a type name, optionally with size bounds within the

brackets. For example, Integer[1-10] would be a collection of Integers that ranges from 1 to 10 elements.

For specific kinds of collections, a collection type may be indicated with <collection kind> of <type>. An optional

size bound can be specified in brackets as with general collections.

4.3. Data Members

The data members of an object represent the data exposed by the object through its API. Together, the data

members comprise the visible state of the object. They are listed along with their types and a description of

their meaning and purpose within the system being described. Unless otherwise noted, data members are read-

only via the API and are updated through operations or the internal working of the object.

Object state is described simply as data in order to leave the method by which it is accessed unspecified. Some

implementations may follow a highly object-oriented approach with operations provided to read all state, while

others may simply store data in pre-allocated tables that are exposed to the rest of the system.

4.4. Operation Members

Operations are the primary interaction points with objects. Each operation may take a fixed set of parameters,

each of which is given with its type and a brief description of its meaning and purpose. The action associated

with the operation is described as well.

Commands are operations that the user of the API initiates by invoking them with the required parameters.

They may be used to request a service, invoke a protocol action, update some piece of object state, or some

combination thereof.

Indications are operations that the object initiates and which present the associated parameters to the user of

the API. They may be used to provide requested data, notify the user of some change in state, or report an

error.

Commands and Indications are therefore discriminated by the primary direction of information flow that they

facilitate. This is not meant to constrain the implementation to any particular mechanism: Commands might be

implemented via function calls, placing messages in a queue, raising asynchronous events, etc. Indications might

likewise be implemented via callback functions, polled message queues, asynchronous event listeners, etc.

4.5. API Dynamic Behavior Format

Interaction diagrams are presented after the descriptions of the APIs in order to illustrate common interaction

scenarios. The diagrams will loosely follow the UML interaction diagram format. Participants in the diagram and

their interaction arrows will be described as often as possible with the names of the objects and operations as

presented in the API Description section.

Additional types of diagrams may be used to clarify, when appropriate, and their interpretation will be described

as they are presented.

These are presented for the purpose of understanding typical interactions in the usage of the APIs, and are

neither exhaustive in their coverage of possible cases nor normative in their description of interactions.

4.5.1. Successful operation cases

One or more diagrams may be presented to describe typical protocol behavior in successful cases; i.e. where no

error or exceptional conditions arise. If more than one diagram is shown, they will show different valid

configurations of the participants in the protocol, and/or different patterns of interactions that lead to a

successful case.

4.5.2. Exceptional operation cases

One or more diagrams may be presented to describe exceptional circumstances that may arise in the protocol

operation and may be handled and reported by the protocol in question. These are not meant to specify higher-

level error handling, but to describe what conditions may lead to any exceptional or error states described in the

API Description.

5. Software Architecture

This section describes function prototype APIs, with associated commentary as to the usage and relevance. The

function definitions themselves are purposefully left descriptive rather than call for a suggested function format

with associated data type definitions. Details such as data types, error handling, notification methods – e.g.

callback functions, event indications, etc. – are deliberately left to specific implementations to address in

whatever manner is appropriate.

One key point not explicitly addressed is control, configuration and usage of multiple available physical network

interfaces for AVB usage. The function descriptions in this section assume to operate on a single physical port

context. The standards define the protocol operation on a per-port and per-endpoint basis.

5.1. gPTP

The gPTP subsystem must maintain and provide access to its local notion of the current gPTP time in a low-

latency, low-jitter method. As the interface to operating-system device drivers vary greatly, a gPTP subsystem

will generally require the following elements from the network interface:

 As necessary, access to all relevant clock sources, such as but not limited to the local LAN wall clock,

cross time-stamped to a common system reference accessible to the PTP subsystem,

 Access to timestamps on received gPTP event frames,

 Access to timestamps on transmitted gPTP event frames.

Some highly integrated implementations may use a common reference clock for network packet timestamp and

the gPTP reference clock. However, if the reference clock used for network packet timestamp is not the same as

the gPTP reference clock, then the gPTP subsystem must have means to cross-timestamp and correlate the two

clocks. For further motivation for this requirement, see the Precision Time Measurement (PTM) PCI-SIG ECN.

Figure 11 implicitly assumes a simplified implementation based on a typical PC hardware architecture consisting

of a LAN interface connected to a general purpose CPU. The diagram illustrates the resulting relationships

between various Clock Objects to enable the gPTP subsystem to recover the network time from a remote

Master node using locally available hardware clock sources. In this example, the gPTP subsystem uses the local

CPU clock counter (‘TSC Clock Object’) to provide the gPTP time on-demand to client applications.

As Figure 11 illustrates, network packet timestamps are captured by the network interface, referenced to a

network reference clock. The network reference clock itself is correlated to the CPU clock counter, enabling the

gPTP subsystem to translate the PTP timestamp values from the network into CPU clock counter values (TSC). As

additional timestamp Clock Times are provided with the PTP network packets, the gPTP subsystem calculates

the Master AS-time rate related to the advance of the local CPU clock counter.

Figure 11. Example Clock System Diagram

The details of creating, enumerating and managing Clock instances are left to implementation discretion. A gPTP

instance could range from a standalone subsystem providing services to applications, or used as a library or set

of subroutines to a monolithic application.

Minimally, a “gPTP” clock would be created and maintained, with the underlying service consuming and

producing gPTP event packets. Ancillary clock instances can be created as system-specific design requires. For

instance, a media clock instance could be created to relate a media clock period to the gPTP time and vice versa.

5.1.1. Object Definitions

Object Description

Clock Object Clock Object:: Structure of

 Type:: Clock Type

 RateRatio:: Real number

 PhaseOffset:: Integer in nanoseconds

 ClockSamples:: Clock Time[] samples

An object used to relate an incrementing counter with some arbitrary

frequency and possible jitter to a common gPTP referenced global time. The

clock frequency is determined by supplying a series of Clock Times and the

gPTP subsystem is capable of calculating both the resultant frequency and

jitter relative to the internally maintained gPTP time.

Although the times are all rooted ultimately to the gPTP time, a Clock

Object can be indirectly related to gPTP time, where the units of supplied

Clock Times are related to yet another initialized Clock Object.

The RateRatio type in gPTP is defined as a 64 bit floating point value,

although a common tradeoff to improve round off errors is to expose a

parameter “RateRatioMinusOne”, as many of the rates are very close to the

value 1.0. Subtracting ‘1.0’ makes a binary32 float value (defined in IEEE

Std. 754™-2008) more stable for computation. For example, a clock that is 1

part per million fast relative to another clock could be represented as the

number 1.000001 as a ratio, or could be represented as the value 0.000001

as the “RateRatioMinusOne”. 1.000001 represented as an IEEE float32 will

have a 4.6 % error due to lack of enough mantissa bits, whereas the

number 0.000001 will be accurate to the 14th decimal point.

5.1.2. Data Type Definitions

Data Type Description

Clock Time Clock Time:: 64 bit Integer

Sampled Value of a Clock Object. In practice, the Clock Time can be either

an instantaneously latched value such as a sampled clock edge transition or

an approximated value where a transition is detected by periodic sampling.

Implementation-defined units, typically 64-bits of Clock Object units

(interpretation defined by Clock Type).

Clock Type Clock Type:: Enumeration of gPTP, SysClock, LAN, MediaClock, …

System-specific enumeration of various clock sources available within an

endpoint.

gPTP Clock Time gPTP Clock Time:: Structure of

Seconds:: 64 bit Integer

FractionalNanoseconds::64 bit Integer

An expanded representation of the gPTP time exposing the 48-bit seconds

and 48-bit FractionalNanoseconds fields of the Extended Timestamp of

gPTP.

Grandmaster Status Grandmaster Status:: Enumeration of Available, Uncertain, New Election,

Unavailable.

Enumeration of Grandmaster events to report, either as a polled interface

to get status, or to proactively notify clients.

In the simple case, if the local gPTP subsystem is the Grandmaster, the gPTP

subsystem would report Available. As all nodes start out initially in the

Grandmaster state until a best-master is chosen, this may be a transient

state.

The Grandmaster can be Uncertain if for whatever reason the

synchronization packets are being intermittently dropped, or timestamp

information not supplied.

A Grandmaster can have a New Election if a best-master clock algorithm

executes and results in a change of the Grandmaster source. A client can

also expect an Available status to be indicated.

The Grandmaster may also be Unavailable – in such cases when the best

master clock algorithm hasn’t completed the initial selection, or the current

Master fails and no end node does an announcement to reselect a master.

5.1.3. Data Member Definitions

Data Member Description

Slave-only mode Slave-only mode:: Boolean

In some usages, starting the gPTP subsystem in Slave-only mode enables

faster and more reliable startup times by bypassing the requirement to

execute the best master clock algorithm.

gPTP Rate Ratio gPTP Rate Ratio:: Real number scaling local clock source to master

A startup optimization involves saving and reloading rate ratios and path

delays of the network from a prior system startup.

See the discussion above regarding the tradeoffs of a 64 bit representation

versus a 32 bit representation, and methods to improve the representation.

Path Delay Path Delay:: Integer in nanoseconds

A startup optimization involves saving and reloading path delays of the

network from a prior system startup.

Neighbor Delay Neighbor Delay:: Integer in nanoseconds

The ability to adjust the neighbor delay enables applications to correct for

fixed errors in the underlying packet timestamp hardware.

Discontinuity Threshold Discontinuity Threshold:: Integer in nanoseconds

A configurable threshold (in terms of jitter in RMS nanoseconds) on the

gPTP subsystem to control when the gPTP subsystem indicates the selected

clock master is unstable or unreliable.

5.1.4. Operation Definitions

Operation Direction Description

Grandmaster

Change

Indication Grandmaster Change

 Status:: Grandmaster Status

An event detected by the gPTP subsystem indicating to a gPTP

client the gPTP service has selected a new Master for

synchronization.

Implementations must be tolerant of transient failures in the

AVB network. One such transient event involves changes in

the clock source being used as the master clock in the AVB

network. In general, endpoints should continue to transfer

media streams without interruption during a best master clock

re-election.

When the master time disappears, the end nodes are said to

enter into a free-wheel mode on the assumption that the

previously compensated clocks will not rapidly drift from the

previously synchronized values. Hence, client applications

fundamentally must know when to disregard the timestamps

and also free-wheel their media clock recovery systems. 14

Note: On change of grand master, prior estimates of local

clock sources relative to gPTP time will need a settling period

as new rate ratios are estimated based on updated grand

master supplied times. The quality of the local clocks can be

determined based on the Get Clock Quality API.

Master Time

Discontinuity

Indication Master Time Discontinuity

Jitter:: nanoseconds of detected jitter

An event detected by the gPTP subsystem indicating the

absolute Master Time has changed at a rate in excess of the

selected Discontinuity Threshold.

This can either indicate a change in the grandmaster, or an

excessively unstable grand master.

For example, if the Discontinuity Threshold is set to (50

nanoseconds), the gPTP subsystem would generate a

Discontinuity event whenever the phase error exceeds 50

nanoseconds.

Initialize Clock Command Initialize Clock

 Clock:: Clock Object

Initialization function for a Clock Object

Clock Cross

Timestamp

Command Clock Cross Timestamp

 Sampled Clock:: Clock Object

 Sampled Clock Value:: Clock Time

 Reference Clock:: Clock Object

 Reference Clock Value:: Clock Time

This API is used for clients to supply captured cross

14
 See the discussion of the tu (timestamp uncertain) flag in IEEE Std. 1722™-2011, Clause 5.4.7.

timestamps to the gPTP subsystem. The gPTP subsystem uses

these samples to calculate ratios which can be used to

translate or extrapolate one clock into another clock

reference. The gPTP service uses these supplied cross

timestamps to perform internal rate estimation and

conversion functions.

Note: If the Sampled Clock Value is captured programmatically

– such as bracketing the time between (2) reference times, the

client should average the reference times before calling this

function.

Internally, the function would store the state of the various

cross timestamp samples, sufficient to build a least-squares or

other linear best-fit approximation, as well as calculate a

fitness criteria which can be queried later to determine the

clock quality.

Translate Clock Command Translate Clock

 Source Clock:: Clock Object

 Source Time:: Clock Time

 Translate2Clock:: Clock Object

 Translated Time:: Clock Time

The gPTP subsystem takes as an input the Source Time relative

to Source Clock timebase supplied by the client, and translates

the time to Translated Time expressed relative to

Translate2ClockTimebase. One example would be to translate

from the “Host CPU” time [SysClock] to “gPTP Time” (modulo

64-bit).

Get gPTP Clock Command Get gPTP Clock

 Source Clock:: Clock Object

 Source Time:: Clock Time

 Translated Time:: gPTP Clock Time

Returns the fully expanded 48-bit seconds, 48-bit

FractionalNanoseconds gPTP time representation of the given

input Clock Time (based on the corresponding Clock Object).

Supplying a gPTP Clock Object with an associated gPTP Clock

Time (modulo 64-bit) will return the equivalent gPTP time

based on the current epoch.

Get Clock Quality Command Get Clock Quality

 Clock:: Clock Object

 Clock Error:: (signed) Integer[] – array of offset errors

 Clock Samples:: integer – samples returned

The gPTP clock quality measured by error calculation on each

Sync message received. For a gPTP subsystem which is also the

master, error will always report 0. Otherwise, reports the

phase error measurements calculated by the gPTP subsystem

on each received Sync packet.

The clock quality of derivative (local) clocks can also be

queried relative to the local gPTP clock source.

5.1.5. gPTP Dynamic Behavior Examples

The following diagrams illustrate the common software flows for interacting with the gPTP service. Figure 12

illustrates the interaction with the gPTP service with the underlying LAN device to initialize and establish time

synchronization.

Figure 13 illustrates how a client application can use the gPTP service to map a clock source – a media clock in

this example – into a gPTP clock.

Figure 14 illustrates the error handling scenario where the underlying grand master clock source disappears, and

is replaced by another source.

Figure 12. gPTP Initialization and gPTP Clock Synchronization

Figure 13. Clock Cross Timestamp and Translate Clock usage.

Figure 14. PTP Timeout followed by new master selection.15

5.2. Stream Reservation Protocol (SRP)

All bandwidth reservation operations are performed on a physical Ethernet port basis. The following sections

illustrate functions supplied by the bandwidth reservation subsystem to join an AVB network as well as establish

stream bandwidth reservations. The sections are organized into common functions, Talker-specific functions and

Listener-specific functions. Client applications implementing Talker or Listener functionality would make use of

these functions.

Figure 15 outlines a generic internal representation of the SRP service. The SRP service primarily maintains the

current database of SRP attributes within the network. The SRP service makes use of a variety of timers required

by MRP to refresh and maintain the various attributes.

15
 IEEE Std. 802.1AS™-2011, Clause 10.6.3.1 et al.

Figure 15. Example SRP Implementation

5.2.1. SRP Endpoint

An SRP Endpoint object encapsulates the SRP protocol's operation for a single physical port on a network

endpoint.

5.2.1.1. Object Definitions

Object Contained By Description

SRP Endpoint SRP Endpoint:: Object of

 Domain:: Object Domain[1-2]

 Talker:: Object Talker

 Listener:: Object Listener

Manages the SRP protocol for a single network port.

An Endpoint may support a single Talker, a single Listener,

or one of each. The Talker and Listener objects are

described later.

Domain SRP Endpoint Manages the attributes for a single SRP Domain.

An Endpoint must support at least the Class B domain, but

it may also support the Class A domain. Each supported

domain is managed by a separate instance of the Domain

object. The Domain object is described later.

Talker SRP Endpoint Manages the Talker attributes for a SRP Endpoint.

Listener SRP Endpoint Manages the Listener attributes for a SRP Endpoint.

5.2.1.2. Data Type Definitions

Data Type Description

Stream Parameters Stream Parameters:: Structure of

 Stream ID:: Integer of 64 bits

 Stream DA:: MAC Address

 VLAN ID:: Integer

 Traffic Class:: Enumeration of Class A, Class B

 Maximum Frame Size:: Integer in Bytes

 Frames Per Interval:: Integer [1..]

 Rank:: Enumeration of Normal, Emergency

 Accumulated Latency:: Integer in Nanoseconds

A structure containing the SRP-related parameters of a single stream.

The Stream Parameters structure provides all the details necessary to

reserve bandwidth for a stream on the network or to configure a Listener to

receive that stream. The fields of the structure are described below:

• Stream ID: An identifier for the stream, unique within the domain.

Typically constructed by the local (talker) station MAC address

appended with 2 bytes to identify up to 65,536 unique streams.

• Stream DA: A multicast MAC address unique to a Talker and Stream.

MAAP can be used for dynamically allocating multicast MAC addresses

for use as stream destination MAC addresses as well as defining a

range of multicast MAC addresses which may be used for locally

administered assignments.

• VLAN ID: The VLAN on which the stream will be transmitted. A default

VLAN ID for a given Class ID is returned when the end point joins a

given domain, although a talker can advertise a stream on any desired

VLAN ID.

• Traffic Class: The class with which the stream will be transmitted. It

determines the required priority and class measurement interval. The

priority for a given Class ID is returned when the end point joins a

given domain.

• Maximum Frame Size: The largest possible Talker AVB frame

transmitted as part of the stream. Together with Frames Per Interval,

this specifies the stream bandwidth requirements. The application

should allocate the maximum possible data payload of an individual

packet (the PDU). This excludes media-specific Layer-2 information,

such as, using LAN as an example, the 6 byte source address, 6 byte

destination address, 4 byte VLAN/User Priority tag and 4 byte CRC

applied to an Ethernet frame.

• Frames Per Interval: The maximum number of frames the Talker will

transmit per interval as part of the stream. The observation interval

varies depending on Class Priority – Class A has 125 microsecond

intervals, whereas Class B has 250 microsecond intervals. Together

with Maximum Frame Size, this specifies the stream bandwidth

requirements.

• Rank: Determines whether a stream is of normal importance or

emergency importance for purposes of reservation preemption.

Values are either emergency traffic (0) or normal priority (1). 16

• Accumulated Latency: The maximum latency a frame may experience

while traveling to this point in the network.

5.2.1.3. Data Member Definitions

Data Member Description

16
 See IEEE Std. 802.1Q™-2011, Clause 35.2.2.8.5b.

Current VLAN

Registrations

Current VLAN Registrations:: Set of Int

The set of VLANs that the Endpoint currently belongs to.

The Endpoint's port may belong to a number of VLANs. This field describes

the VLANs it currently belongs to.

5.2.1.4. Operation Definitions

Operation Direction Description

Join VLAN Command Join VLAN

 VLAN ID:: Integer

The SRP Endpoint will join the requested VLAN.

The Join operation invokes the MVRP protocol actions

required to join a VLAN. When complete, the Current VLAN

Registrations will reflect the change. An implementation may

choose to provide additional notification if desired.

Leave VLAN Command Leave VLAN

 VLAN ID:: Integer

The SRP Endpoint will leave the requested VLAN.

The Leave operation invokes the MVRP protocol actions

required to leave a VLAN. When complete, the Current VLAN

Registrations will reflect the change. An implementation may

choose to provide additional notification if desired.

5.2.2. Domain

Each Domain object associated with the Endpoint manages the SRP domain associated with one Traffic Class.

The association is based on the Class ID field, which is statically configured per Domain. The other data fields will

start at their configured default values for the Traffic Class.

In order to be considered part of the SRP Domain for the Traffic Class, the Domain must declare the same

parameters that its network peer is declaring. When a peer declaration is received via indication, a matching

declaration command should be issued, after which the data fields will be updated.

5.2.2.1. Object Definitions

Object Contained By Description

Domain SRP Endpoint Manages the attributes for a single SRP Domain.

5.2.2.2. Data Member Definitions

Data Member Description

Class ID Class ID:: Enumeration of Class A, Class B

The SRP Traffic Class this Domain is responsible for.

The Class ID field identifies which Traffic Class the Domain object manages.

It forms an implicit parameter to the Domain operations and indications.

Class numeric identifiers used to map Classes to specific (and changeable)

Class Priority values. 6 is used to identify Class A, 5 for Class B.

Class Priority Class Priority:: Integer

The priority level that Talkers in this Domain will use.

The Class Priority field gives the value to use as the priority for this

Domain's Traffic Class. This is provided to the Talker as it processes stream

advertisement commands.

The Class Priority is encoded in the user priority field of in the PCP field of

Ethernet frames. Common values are (3) for Class A and (2) for Class B

traffic.

Class Default VLAN Class Default VLAN:: Integer

The default VLAN for use by this Domain.

The Class Default VLAN field determines the default VLAN for the traffic

class the Domain object manages. This VLAN can be joined before

attempting to make reservations for the traffic class, although a talker can

select any valid VLAN for advertising a stream.

Values range from 2 – 4094, although the common (default) value for AVB

is 2.

Port Latency Port Latency:: Integer in Nanoseconds

The amount of latency this port introduces when transmitting.

Since the egress latency of a stream from a port depends partially on the

class measurement interval of the stream's traffic class, the static

configuration of the latency falls to the responsibility of the Domain object.

This value is added to the Accumulated Latency field of the Talker's Stream

advertisements before they are registered with MSRP.

5.2.2.3. Operation Definitions

Operation Direction Description

Declare Class Command Declare Class

 Priority:: Integer

 Default VLAN:: Integer

This command registers the end node with the specified AVB

domain.

Declare the priority and default VLAN to be used for this

Domain's traffic class. It must match the peer's values to be

considered a member of the domain for the traffic class.

The DOMAIN attribute from a bridge propagates the user

priority and VLAN information used to encapsulate stream

reserved AVB traffic. The end point joins the detected

DOMAIN attribute to indicate to the bridge the attached port

is now part of the SRP domain17.

Peer Class

Declaration

Indication Peer Class Declaration

 Priority:: Integer

 Default VLAN:: Integer

An indication of what domain information the peer is

advertising.

This provides notification that the peer has declared Traffic

Class parameters for this Domain's Traffic Class. They must

match the Domain's parameters in order for the Endpoint to

be considered a member of the domain for the traffic class.

5.2.3. Talker

The Talker object encapsulates the interface to the Endpoint's functionality for advertising streams on the

network. An Endpoint may have at most one Talker, but it is not required to have one if it has a Listener.

5.2.3.1. Object Definitions

Object Contained By Description

Talker SRP Endpoint Manages the Talker attributes for this Endpoint.

5.2.3.2. Data Type Definitions

Data Type Description

Talker Stream Status Talker Stream Status:: Enumeration of

 No Listener

 Failed Listener

 Active and Failed Listeners

17
 See IEEE Std. 802.1Q™-2011, Clause 34.2.

 Active Listener

An enumeration of possible states regarding any Listeners a stream may

have.

The Stream Status type enumerates the information a Talker may receive

about whether its stream advertisements have any corresponding Listener

requests and whether those resulted in any reservations.

The No Listener and Failed Listener states indicate that no reservations for

the stream exist on the network, although in the case of Failed Listener at

least one Listener has requested it despite insufficient resources on the

network for a reservation to be established.

The Active and Failed Listeners and Active Listener states indicate that at

least one reservation for the stream exists on the network. The Talker may,

but is not required to, transmit on the stream immediately after entering

these states.

5.2.3.3. Data Member Definitions

Data Member Description

Available Tx Bandwidth Available Tx Bandwidth:: Integer in Octets/sec

The amount of bandwidth still available for stream reservations.

This field starts at a value that represents 75% of the maximum data rate of

the Endpoint's network port. As reservations are established (not just

advertisements) the available bandwidth diminishes accordingly.

Stream Advertisements Stream Advertisements:: Structure[] of

 Stream:: Stream Parameters

 Status:: Talker Stream Status

A collection of the streams being advertised by this Talker along with their

current Stream Status.

This field holds information about all the streams that the Talker is currently

advertising along with their current reservation status. It is updated in

response to the associated Talker commands and protocol activity.

5.2.3.4. Operation Definitions

Operation Direction Description

Add

Advertisement

Command Add Advertisement

 Stream:: Stream Parameters

The Talker will add the stream to the collection of streams it is

currently advertising.

This command adds the stream described by the Stream

parameter to the streams the Talker is currently advertising. If

the advertisement exceeds the current available bandwidth, it

will still be added but it will immediately propagate as a failed

advertisement due to insufficient bandwidth.

Remove

Advertisement

Command Remove Advertisement

 Stream:: Stream ID

The Talker will remove the stream from the collection of

stream it is currently advertising.

This command removes the stream described by the Stream

parameter from the streams the Talker is currently advertising.

If Listeners had requested the stream, they will be notified

that it is no longer available and any associated reservations

will be removed and bandwidth freed. This may result in other

advertisements that failed due to insufficient resources

automatically becoming available.

Stream Status

Change

Indication Stream Status Change

 Stream:: Stream ID

 Status:: Talker Stream Status

A change in Stream Status has occurred for one of the

currently advertised streams, and the new Stream Status is

given.

This indication gives notification of a change in the stream

status relating to Listeners requesting or withdrawing requests

for the stream. It may also indicate a change in whether a

current reservation for the stream exists on the network or

not as described in the description of the Talker Stream Status

data type.

5.2.4. Listener

The Listener object encapsulates the behavior of the Listener aspect of the SRP protocol for the Endpoint. The

Endpoint may have a single Listener object, or it may optionally have none if it has a Talker object. Some device

domains, such as the Pro Audio domain, may require all Endpoints with a Talker object to also have a Listener

object in order to ensure media clock fidelity through a shared "house clock" stream.

The interface described here contains an optional mechanism, query filtering. This interface allows the Listener

to describe the set of streams it would like to receive notifications about, even if it is not ready to request to

listen to them yet. This can reduce processing overhead when the Endpoint belongs to a network with many

stream advertisements. It can also give a Listener time to prepare to receive a stream before it establishes a

reservation. However, the interface elements with the term "query" in their names can be eliminated if the

query filter mechanism is not desired.

5.2.4.1. Object Definitions

Object Contained By Description

Listener SRP Endpoint Manages the Listener attributes for this Endpoint.

5.2.4.2. Data Type Definitions

Data Type Description

Bridge ID Bridge ID:: EUI-64

The canonical identifier of a bridge in the SRP Domain.

A Bridge ID is the canonical MAC address of a SRP-enabled network bridge

and two additional bytes of information. It is used to identify at which point

in the network a reservation failed.

Failure Reason Failure Reason:: Enumeration of

Insufficient bandwidth

Insufficient bridge resources

Insufficient bandwidth for traffic class

StreamID in use by another Talker

Stream destination address already in use

Stream preempted by higher rank

Reported latency changed

Egress port not AVB capable

Use a different destination address

Out of MSRP resources

Out of MMRP resources

Cannot store destination address

Requested priority is not an SR Class priority

MaxFrameSize is too large for media

Fan-in port limit reached

Change in FirstValue for a registered StreamID

VLAN blocked on egress port (Registration Forbidden)

VLAN tagging disabled on this egress port (untagged set)

SR class priority mismatch

An enumeration of possible reasons for SRP reservation failure.

Failure Reason enumerates the possible failure reasons that can be

indicated to a Listener for the inability to make a reservation for a stream.

Listener Stream Status Listener Stream Status:: Variant of

 No Talker with

 Stream ID:: Stream ID

 Active with

 Stream:: Stream Parameters

 Failed with Structure of

 Stream:: Stream Parameters

 Failure Point:: Bridge ID

 Reason:: Failure Reason

A variant type that expresses the states a Listener stream may have.

The Listener Stream Status encodes the information a Listener may know

about the state of a stream it is interested in, including whether any Talker

is currently advertising it, whether there is a current reservation for it to

this Endpoint, and why and where the stream failed to be reserved if that is

the case.

5.2.4.3. Data Member Definitions

Data Member Description

Available Rx Bandwidth Available Rx Bandwidth:: Integer in Octets/sec

The amount of bandwidth still available for stream reservations.

This field typically begins at 75% of the maximum transfer rate of the

Endpoint's network port, although it can be adjusted by design. As

reservations are established, the value decreases to reflect the bandwidth

consumed by the active reservations.

Stream Requests Stream Requests:: Listener Stream Status[]

A collection of the Listener Stream Status of all streams this Listener has

explicitly requested to receive.

This is a collection of the streams that the Listener has requested to receive.

A value in this field with the Active tag corresponds to a stream reservation.

If no Talker is yet advertising a stream in this collection, the Listener will

become aware of a matching advertisement very shortly before the

associated reservation is established, which means it will have little time for

any necessary configuration before streaming traffic may arrive.

Queries Enabled Queries Enabled:: Boolean

A Boolean value indicating whether the query filter mechanism for stream

advertisements is enabled.

Stream Queries Stream Queries:: Listener Stream Status[]

If Queries Enabled is true, this is a collection of the Listener Stream Status

of all streams the Listener has established queries for.

This collection represents the streams that the Talker is interested in

receiving notifications about, but has not yet requested to receive. A value

in this field with the Active tag corresponds to an active stream

advertisement by some Talker in the Domain.

The Listener may use this mechanism to watch for a number of streams and

choose between them after they are advertised. It may also simply provide

a delay between notification of a Talker's advertisement and establishment

of a reservation in which the Listener can make the necessary configuration

to receive the streaming traffic.

This field is empty when the query filtering mechanism is disabled.

5.2.4.4. Operation Definitions

Operation Direction Description

Add Listen Request Command Add Listen Request

 Stream:: Stream ID

The Listener will immediately request to receive a stream,

which will activate the reservation if it is currently advertised.

This makes a request via SRP for the Listener to obtain a

reservation for the stream referenced by the Stream

parameter. It is added to the Stream Requests data field, and

a Stream Status Change indication may immediately occur if

there is a matching Talker Advertisement.

Remove Listen

Request

Command Remove Listen Request

 Stream:: Stream ID

The Listener will remove its request to receive a stream, which

will terminate an active reservation.

This removes via SRP the Listener's request to obtain a

reservation for the stream referenced by the Stream

parameter. If a reservation existed, it will be torn down. If it

was the last reservation for the stream, the Talker will be

notified.

Query

Enable/Disable

Command Queries Enabled:: Enumeration of Enabled, Disabled

Turn on/off the query filter mechanism.

This field records whether the query filtering mechanism is

enabled. It is enabled by default, which means the Listener

must request an indication for specific stream status change

received via SRP.

If Query Filtering is enabled, the following commands may be

used to restrict the streams which the Listener is interested in

receiving Stream Status Change indications about. Queried

streams and their associated status will be stored in the

Stream Queries data field.

If disabled, the Stream Queries data field will be emptied and

any change in stream status received by the Listener via SRP

will cause a Stream Status Change indication. This can be used

to enumerate all known talker-advertised streams to a

listener.

Add Query Command Add Stream Query

 Stream:: Stream ID

The Listener will give indications of Stream Status Change for a

stream without requesting to receive it.

This command adds the stream referenced by the Stream

parameter to the Stream Queries data field, thereby indicating

that the Listener is interested in receiving Stream Status

Change indications for that stream without committing to

requesting a reservation for it. The same stream may be in

both Stream Queries and Stream Requests; only one indication

per status change will be made.

Remove Query Command Remove Stream Query

 Stream:: Stream ID

The Listener will no longer give indications of Stream Status

Change for a stream if it is not currently requesting to receive

it.

This command removes the stream referenced by the Stream

parameter from the Stream Queries data field, thereby

indicating that it is no longer interested in receiving Stream

Status Change indications for it unless it has requested to

make a reservation to receive the stream.

Stream Status

Change

Indication Stream Status Change

 Status:: Listener Stream Status

A change in the status of the indicated stream reservation has

occurred.

This indication gives notification of a change in the status of a

Listener Stream in either the Stream Requests or Stream

Queries collections. See the description of Listener Stream

Status, Stream Queries, and Stream Requests for more

information.

5.2.5. SRP Dynamic Behavior

Figure 16, Figure 17 and Figure 18 illustrate in detail the API sequence and corresponding SRP behaviors

between the Talker and Listener. Fundamentally, Talkers and Listeners pair up to establish a stream by pairing a

Talker Advertise attribute with Listener Ready Attributes. This pairing is based on the Stream ID, as well as the

participants joining the associated VLAN.

The original SRP protocol definition assumed much of the discovery and configuration of streams could be

handled at the SRP layer itself. For example, the Domain attribute carries a default suggested VLAN ID for a

class. A Talker could use the VLAN from the Domain message, or use any other valid VLAN. Listeners were

expected to wait to receive a Talker Advertise attribute to extract and join the associated VLAN.18 Listeners

would perform this before the Add Listen request.

In early deployments, using AVB domains with small numbers of streams, Listeners were able enumerate all

Talker Advertise flows and dynamically connect to Talker streams. However, as deployments scaled in size, the

size of the SRP database became a processing and storage burden throughout the AVB network – on bridges and

end nodes alike. As many of the Listeners only access a small subset of Talker streams at any time, the protocols

are evolving to prune propagation of unneeded attributes – such as Talker Advertise attributes - through the

18
 IEEE Std. 802.1Q-2011, clause 35.1.2.2, items 1) and 2).

AVB domain. The tangible impact of this pruning is a Listener must in practice know the stream identifier and

VLAN prior to joining a stream with or without a corresponding Talker Advertise being present. The stream ID

and VLAN must be supplied to both end points by ACMP, by manual configuration, hard-coding or other

method.

Figure 16. Overall Stream Creation and Termination between Endpoints

Figure 17. SRP Reservation Process

In Figure 17, the reader should note the Listener handles both cases where the Listener starts before or after the

Talker completes advertising the stream. The Listener obtains the stream identifier and VLAN from either an

ACMP controller, via configuration, or using hard-coded defaults (such as automotive usages).

Figure 18. Stream Activation Flow

Figure 19 and Figure 20 illustrate the local interactions with the SRP service for a Talker and a Listener. Figure 19

also shows the case where a Domain attribute is advertised from the peer and is available from SRP when the

client starts up. However, by the protocol, there is no rule which side advertises Domain attributes first.

Endpoints should never wait for the bridge to declare first, as a simple endpoint-to-endpoint connection without

an intermediate bridge will never establish a Domain and therefore never stream any data. The endpoint should

declare a Domain attribute with AVB default values, and only when the peer advertises a mis-match, the end

node can decide whether to re-declare the Domain attribute with the non-default settings from the peer. It is

assumed endpoint-to-endpoint configurations will resolve to the AVB default values for the Domain attributes.

Figure 19. Detailed Talker-side API Parameter Details

Figure 20. Detailed Listener-side API Parameter Details

5.2.6. SRP Implementation and Usage Notes

5.2.6.1. Startup Optimization by Database Caching

In order to reduce startup time, applications with static or rarely-changing stream configurations may cache the

state of the SRP Endpoint’s objects and assume they are active upon re-loading. However, a fully compliant

bridge will require the AVB Domain to be fully established before streaming traffic will be forwarded, so the

bridge firmware will need to be complicit in any extreme startup optimizations.

5.2.6.2. Optimization of continuous attribute ranges

The low-level protocol that SRP is built upon includes some optimizations for efficiently dealing with large

numbers of streams. In order to take advantage of these optimizations, a Talker that is advertising multiple

streams must arrange their attributes so that they all increase sequentially together. In other words, the

streams are run-length encoded, so any number of sequential streams can be represented by a single record.

On the other hand, any break in the sequence will add a new record for any break in the sequence.

5.2.6.3. Restrictions on modifying streams/re-using Stream IDs

Another effect of the low-level implementation is that when a Talker de-registers a stream, there is a time

window in which the change is being propagated and the same Stream ID cannot be re-registered with different

attributes. An SRP client must wait 2 LeaveAll periods before recycling a Stream ID with different attributes.

Internally, the SRP service may implement an internal linger state on the attribute to prevent clients from

reusing the Stream ID with different parameters. Linger does not map to any MRP state. An attribute is said to

linger in the AVB domain for 2 LeaveAll periods which varies over a random time interval not visible to client

applications. Instead, the SRP service will count the number of LeaveAll PDUs received to implement an age on

the lingering attributes.19

5.2.6.4. Talker over-advertisement of streams

A talker may advertise multiple streams that, in aggregate, require more resources than are available on the

network. However, once enough streams have been established that the available resources are consumed, the

other advertisements will indicate that they cannot currently be established by changing to Talker Failed

notifications beyond the point in the network where resources are exhausted.

5.2.6.5. End node Domain behavior

When an end node’s network port comes online, it must assume the default SR Class priority and VLAN values.

Once it receives a Domain attribute declaration for the SR Class, it should adjust to the values in the domain

attribute and declare a matching Domain attribute.

This allows back-to-back endpoint streaming as well as automatic adaptation to SR Class values configured on

the network.

5.2.6.6. Oversight Regarding Talker VLAN membership requirements

SRP does not allow a reservation to be established to a Listener that is not a member of the stream's VLAN. This

is because the bridge could drop the traffic without VLAN membership.

However, it is also the case that a bridge could drop packets from a Talker that was not a member of the VLAN it

was streaming on. SRP does not currently prevent establishment of a reservation in this case, so the situation

must be prevented at a higher level.

5.3. AVB LAN

The LAN interface provides the lowest level of software services above the network hardware. As Figure 21

illustrates, the LAN service provides the standard transmit and receive interfaces for best-effort network traffic,

preferably prioritized processing queues for gPTP and SRP, and also provides interfaces specific to AVB. As

19 This warning only applies if the characteristics of the stream are changed. A Talker may immediately

reregister a stream if the stream attribute is identical to the last time it was deregistered. See last paragraph of

IEEE Std. 802.1Q™-2011, Clause 35.2.2.8.

illustrated in Figure 22, the LAN may be used to sequence and shape endpoint egress traffic for all hosted talker

streams, both collectively and individually. The AVB LAN traffic must be prioritized and merged with possible

best-effort networking traffic for transmission onto the LAN medium according to the limits set by the SRP

reservations in place. As illustrated in Figure 23, the LAN is also involved in timestamping gPTP event messages

that are transmitted and received.

Figure 21. AVB LAN System

Media application usage can vary – some applications would supply the AVB packets just in time for (and just

ahead of) LAN transmission. This occurs when the media data is arriving in real-time, either from a live capture

or as part of a signal processing or media distribution network.

Another common media application streams AVB packets using samples read from a file or other storage

medium. In this case, the application does not need to be real-time if the underlying LAN interface supports

pacing and interleaving packets for transmission between streams.

The underlying interface may implement fine-grained control over the packet transmission time on the media,

or it may transmit AVB packets in batches, and uses a FQTSS-compliant traffic shaper to shape the burst of

egress traffic. In either case, packet timestamps enable an application to impose order and timing on the

underlying AVB packet transmission.

Full compliance with the FQTSS requirements for endpoints does require that each stream as well as each SR

class as a whole use the credit-based shaping algorithm defined in the standard for selecting packets to transmit.

Supplying a burst of packets associated with a stream in excess of the allowed bandwidth requires that the LAN

implementation have enough information and resources to queue them and send them at the correct rate, or

else individual streams may not receive their proper share of the bandwidth within the SR class.

5.3.1. Object Definitions

Object Description

LAN Object A networking service providing access to the AVB network.

5.3.2. Data Type Definitions

Data Type Description

Class Priority Map Class Priority Map:: Structure[] of

 ID:: Class ID

 Priority:: Class Priority

The LAN service may need to know which Class (e.g. Class A) is mapped to

which priority (e.g. ‘3’) to enable sorting of AVB packets onto the

appropriate class shapers and queues. AVB Streaming classes must be

mapped to priority levels numerically higher than best-effort traffic.

Common priority values are (3) for Class A and (2) for Class B traffic.

AVB Packet AVB Packet:: Structure[] of

 Class ID:: Class ID

 Packet Data:: Octet[] – array of bytes for the packet

PacketSize:: Integer – size of packet to be transmitted

AtTime:: Clock Time – LAN time packet should be transmitted

An AVB data packet for transmission, the octets of which are the frame to

be transmitted. Packet Data will vary depending on the underlying

transport – LAN versus WLAN - and driver implementations.

Packet Packet:: Structure[] of

 Packet Size:: Integer – size of packet to be transmitted

 Packet Data:: Octet[] – array of bytes for the packet.

A packet without specific timing or traffic shaping meta-data. Used with

various AVB protocols, such as gPTP and SRP, as well as other background

traffic, specific protocols– such as AVB data packets, gPTP and SRP - may

have prioritized receive processing depending on implementation.

Packet Timestamp Packet Timestamp:: Structure of

 Timestamp:: Clock Time

 Structure of

 SequenceID:: Integer – latched from packet

 SourcePortIdentity:: Octet[10] – latched from packet.

 Structure of

 Packet Size:: Integer – size of packet to be transmitted.

 Packet:: Octet[] – array of bytes for the packet

PTP packet meta-data to allow a client application to associate a supplied

timestamp value unambiguously with a gPTP packet transmitted or

received.

Depending on implementation, this could minimally be a 2-byte sequence

ID and 48-bit sourcePortIdentity field out of the PTP frame. The other

extreme is to return the entire transmitted packet with the timestamp

5.3.3. Data Member Definitions

Data Member Description

Multicast Addresses Multicast Addresses:: MAC Addresses[]

Many of the AVB protocols use 6-byte multicast MAC addresses for every

function – gPTP, SRP, active streaming are only a few examples. The

underlying LAN interface needs to support programming various multicast

addresses – primarily for receive filtering.

VIDs VIDs:: Integer[] of VLAN IDs (VIDs)

VLAN tags are 12-bit values embedded within the AVB packets which are

associated with the AVB domain.

Depending on the MAC implementation, some LAN interfaces may need to

be configured to receive specific VLAN identifiers, or dynamically insert

VLAN headers.

The VLAN values are distributed via the SRP protocol.

Media Rate Media Rate:: Integer in octets/sec.

Maximum theoretical unidirectional data transfer rate in octets / second.

The Media Rate as well as the Media Type determine the available

bandwidth and influence the calculations for bandwidth reservations.

Media Type Media Type:: Enumeration of 802.3, 802.11, etc.

The MAC service exposes the underlying media type supported by the

interface – such as LAN, WLAN, etc.

Class Bandwidth

Configuration

Class Bandwidth Configuration:: Structure of

 ID:: Class ID

 Packet Size:: Integer of the maximum AVB packet size (in bytes)

 for a given stream, excluding Layer-2 headers such as

 MAC and Ethertype headers, and also excluding trailing CRC

 bytes.

 Packets Per Interval:: Integer of packets per class-specific

 observation interval.

Configuration parameters required to configure a class-specific traffic

shaper in the MAC service.

5.3.4. Operation Definitions

Operation Direction Description

Transmit at Time Command Transmit at Time::

 AVB Packet:: AV Data Packet

An AVB-specific prioritized transmit routine.

As the LAN interface may only be aware of its local clock for

transmission, transmission times for individual AVB packets

need to be made relative to this local clock epoch. Some

module will need to perform translation if required from the

global gPTP time to the physical interface relative time.

Note that AVB LAN interfaces may also support best-effort

LAN traffic over another, standard networking stack interface

as relevant. These interfaces are out of scope for this

document.

The transmit routine uses the Class ID field to determine

whether to place the packet on a Class A or Class B queue. The

routine should not make assumptions on the PCP priority

within the packet itself to determine which queue to use.

Transmit with

Timestamp

Command Transmit with Timestamp::

 Packet:: gPTP Packet

Depending on the MAC implementation, some LAN interfaces

may require identification of which packets to timestamp for

gPTP (as not all packets are necessarily timestamped by

default).

Clients of this interface should be aware that packet

transmission may be delayed 100’s of microseconds, if not

milliseconds, depending on simultaneous AVB packet

transmission, media speed as well as contending best-effort

LAN traffic. Hence the timestamp results may not be

immediately available.

Transmit

Timestamp

Indication Transmit Timestamp::

 Timestamp Info:: Packet Timestamp

Depending on the MAC implementation, some LAN interfaces

may need to be queried to return the latched transmit

timestamp information for the defined event PTP frames

(gPTP frames with messageType values less than numeric 4).

Other implementations may provide the timestamp

information as meta-data with a completion indication.

PriorityReceive Indication PriorityReceive::

 Packet:: AVB Packet or SRP Packet or gPTP Packet

While not necessarily required, an AVB-optimized and aware

receive path enables lower-latency access to received frames,

and more importantly limits any blocking caused by best-

effort packet processing.

The LAN service can use the PCP field as well as well-known

MAC addresses (for SRP and gPTP) as filtering criteria to sort

frames into queues for prioritized processing above best-

effort traffic. The receive function itself for AVB data traffic

should be non-blocking on reads.

Some AVB transport protocols place time limits on the amount

of delay that can occur between the receipt of a media sample

at the network PHY and the presentation of that sample to an

application or media interface. For example, AVTP allows by

default 2 milliseconds between the time a sample is received

by the transport protocol on the Talker and the time it is

presented by the transport protocol on the Listener. As an

example, assuming 7 network hops on a Fast Ethernet

network, only 460 microseconds remain for packet processing

after arrival at the physical interface on the Listener.

Receive Indication Receive::

 Packet:: Best Effort Packet

Best-effort traffic class receive path, used for traffic which isn’t

latency critical.

Receive

Timestamp

Indication Receive Timestamp::

 Timestamp Info:: Packet Timestamp

Depending on the MAC implementation, some LAN interfaces

may need to be queried to return the latched timestamp

information for the defined event PTP frames (frames with

messageType values less than numeric 4). Other

implementations may provide the timestamp information with

the actual received packet as meta-data.

Get LAN Clock Command Get LAN Clock::

 LAN Clock time:: Clock Time of LAN reference clock

 Reference Clock:: Clock Object of system reference

 clock.

 Reference Clock time:: Clock time of corresponding

 system reference clock.

This function returns a cross timestamp relating the LAN

internal reference clock (used for timestamping of gPTP

packets) to a system-wide clock (e.g. the CPU TSC counter).

Set Class

Bandwidth

Command Set Class Bandwidth::

 Configuration:: Class Bandwidth Configuration

This function adjusts optionally available traffic-class based

traffic shaping functionality in the network interface. While

not strictly required for operation, the availability in the LAN

interface acts as a safe-guard that per-stream traffic shaping

does not inadvertently exceed the aggregate class bandwidth

allocated, resulting in undefined behavior in bridge and

Listener devices.

Note: This function could be called by an MRP service – as SRP

has global knowledge of the various stream reservations on

each of the SR classes (A & B). However – common

implementations have a single Talker instance, which would

also know about global bandwidth allocated per class as well.

Figure 22. Periodic transmit scheduler usage.

Figure 23. LAN and gPTP System Interaction

